Session
Optimization (Convex) 7
Orthogonality-Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analysis
Pengtao Xie · Wei Wu · Yichen Zhu · Eric Xing
Distance metric learning (DML), which learns a distance metric from labeled "similar" and "dissimilar" data pairs, is widely utilized. Recently, several works investigate orthogonality-promoting regularization (OPR), which encourages the projection vectors in DML to be close to being orthogonal, to achieve three effects: (1) high balancedness -- achieving comparable performance on both frequent and infrequent classes; (2) high compactness -- using a small number of projection vectors to achieve a "good" metric; (3) good generalizability -- alleviating overfitting to training data. While showing promising results, these approaches suffer three problems. First, they involve solving non-convex optimization problems where achieving the global optimal is NP-hard. Second, it lacks a theoretical understanding why OPR can lead to balancedness. Third, the current generalization error analysis of OPR is not directly on the regularizer. In this paper, we address these three issues by (1) seeking convex relaxations of the original nonconvex problems so that the global optimal is guaranteed to be achievable; (2) providing a formal analysis on OPR's capability of promoting balancedness; (3) providing a theoretical analysis that directly reveals the relationship between OPR and generalization performance. Experiments on various datasets demonstrate that our convex methods are more effective in promoting balancedness, compactness, and generalization, and are computationally more efficient, compared with the nonconvex methods.
Celer: a Fast Solver for the Lasso with Dual Extrapolation
Mathurin MASSIAS · Joseph Salmon · Alexandre Gramfort
Convex sparsity-inducing regularizations are ubiquitous in high-dimensional machine learning, but solving the resulting optimization problems can be slow. To accelerate solvers, state-of-the-art approaches consist in reducing the size of the optimization problem at hand. In the context of regression, this can be achieved either by discarding irrelevant features (screening techniques) or by prioritizing features likely to be included in the support of the solution (working set techniques). Duality comes into play at several steps in these techniques.Here, we propose an extrapolation technique starting from a sequence of iterates in the dual that leads to the construction of improved dual points. This enables a tighter control of optimality as used in stopping criterion, as well as better screening performance of Gap Safe rules. Finally, we propose a working set strategy based on an aggressive use of Gap Safe screening rules. Thanks to our new dual point construction, we show significant computational speedups on multiple real-world problems.
Cut-Pursuit Algorithm for Regularizing Nonsmooth Functionals with Graph Total Variation
Hugo Raguet · loic landrieu
We present an extension of the cut-pursuit algorithm, introduced by Landrieu and Obozinski (2017), to the graph total-variation regularization of functions with a separable nondifferentiable part.We propose a modified algorithmic scheme as well as adapted proofs of convergence. We also present a heuristic approach for handling the cases in which the values associated to each vertex of the graph are multidimensional.The performance of our algorithm, which we demonstrate on difficult, ill-conditioned large-scale inverse and learning problems, is such that it may in practice extend the scope of application of the total-variation regularization.
Efficient First-Order Algorithms for Adaptive Signal Denoising
Dmitrii Ostrovskii · Zaid Harchaoui
We consider the problem of discrete-time signal denoising, focusing on a specific family of non-linear convolution-type estimators. Each such estimator is associated with a time-invariant filter which is obtained adaptively, by solving a certain convex optimization problem. Adaptive convolution-type estimators were demonstrated to have favorable statistical properties, see (Juditsky & Nemirovski, 2009; 2010; Harchaoui et al., 2015b; Ostrovsky et al., 2016). Our first contribution is an efficient implementation of these estimators via the known first-order proximal algorithms. Our second contribution is a computational complexity analysis of the proposed procedures, which takes into account their statistical nature and the related notion of statistical accuracy. The proposed procedures and their analysis are illustrated on a simulated data benchmark.
An Algorithmic Framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-Gradient Method
Li Shen · Peng Sun · Yitong Wang · Wei Liu · Tong Zhang
We propose a novel algorithmic framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-gradient (VMOR-HPE) method with a global convergence guarantee for the maximal monotone operator inclusion problem. Its iteration complexities and local linear convergence rate are provided, which theoretically demonstrate that a large over-relaxed step-size contributes to accelerating the proposed VMOR-HPE as a byproduct. Specifically, we find that a large class of primal and primal-dual operator splitting algorithms are all special cases of VMOR-HPE. Hence, the proposed framework offers a new insight into these operator splitting algorithms. In addition, we apply VMOR-HPE to the Karush-Kuhn-Tucker (KKT) generalized equation of linear equality constrained multi-block composite convex optimization, yielding a new algorithm, namely nonsymmetric Proximal Alternating Direction Method of Multipliers with a preconditioned Extra-gradient step in which the preconditioned metric is generated by a blockwise Barzilai-Borwein line search technique (PADMM-EBB). We also establish iteration complexities of PADMM-EBB in terms of the KKT residual. Finally, we apply PADMM-EBB to handle the nonnegative dual graph regularized low-rank representation problem. Promising results on synthetic and real datasets corroborate the efficacy of PADMM-EBB.