Skip to yearly menu bar Skip to main content


Session

Matrix Factorization 2

Abstract:
Chat is not available.

Fri 13 July 8:00 - 8:20 PDT

Convolutional Imputation of Matrix Networks

Qingyun Sun · Mengyuan Yan · David Donoho · stephen boyd

A matrix network is a family of matrices, with their relations modeled as a weighted graph. We consider the task of completing a partially observed matrix network. The observation comes from a novel sampling scheme where a fraction of matrices might be completely unobserved. How can we recover the entire matrix network from incomplete observations? This mathematical problem arises in many applications including medical imaging and social networks.To recover the matrix network, we propose a structural assumption that the matrices are low-rank after the graph Fourier transform on the network. We formulate a convex optimization problem and prove an exact recovery guarantee for the optimization problem. Furthermore, we numerically characterize the exact recovery regime for varying rank and sampling rate and discover a new phase transition phenomenon. Then we give an iterative imputation algorithm to efficiently solve optimization problem and complete large scale matrix networks. We demonstrate the algorithm with a variety of applications such as MRI and Facebook user network.

Fri 13 July 8:20 - 8:30 PDT

Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow

Xiao Zhang · Simon Du · Quanquan Gu

We revisit the inductive matrix completion problem that aims to recover a rank-$r$ matrix with ambient dimension $d$ given $n$ features as the side prior information. The goal is to make use of the known $n$ features to reduce sample and computational complexities. We present and analyze a new gradient-based non-convex optimization algorithm that converges to the true underlying matrix at a linear rate with sample complexity only linearly depending on $n$ and logarithmically depending on $d$. To the best of our knowledge, all previous algorithms either have a quadratic dependency on the number of features in sample complexity or a sub-linear computational convergence rate. In addition, we provide experiments on both synthetic and real world data to demonstrate the effectiveness of our proposed algorithm.

Fri 13 July 8:30 - 8:40 PDT

On the Implicit Bias of Dropout

Poorya Mianjy · Raman Arora · Rene Vidal

Algorithmic approaches endow deep learning systems with implicit bias that helps them generalize even in over-parametrized settings. In this paper, we focus on understanding such a bias induced in learning through dropout, a popular technique to avoid overfitting in deep learning. For shallow linear neural networks, we show that dropout tends to make the norm of incoming/outgoing weight vectors of all the hidden nodes equal. We completely characterize the optimization landscape of single hidden-layer linear networks with dropout.

Fri 13 July 8:40 - 8:50 PDT

A Unified Framework for Structured Low-rank Matrix Learning

Pratik Kumar Jawanpuria · Bamdev Mishra

We consider the problem of learning a low-rank matrix, constrained to lie in a linear subspace, and introduce a novel factorization for modeling such matrices. A salient feature of the proposed factorization scheme is it decouples the low-rank and the structural constraints onto separate factors. We formulate the optimization problem on the Riemannian spectrahedron manifold, where the Riemannian framework allows to develop computationally efficient conjugate gradient and trust-region algorithms. Experiments on problems such as standard/robust/non-negative matrix completion, Hankel matrix learning and multi-task learning demonstrate the efficacy of our approach.

Fri 13 July 8:50 - 9:00 PDT

Gradient Descent for Sparse Rank-One Matrix Completion for Crowd-Sourced Aggregation of Sparsely Interacting Workers

Yao Ma · Alex Olshevsky · Csaba Szepesvari · Venkatesh Saligrama

We consider worker skill estimation for the single coin Dawid-Skene crowdsourcing model. In practice skill-estimation is challenging because worker assignments are sparse and irregular due to the arbitrary, and uncontrolled availability of workers. We formulate skill estimation as a rank-one correlation-matrix completion problem, where the observed components correspond to observed label correlation between workers. We show that the correlation matrix can be successfully recovered and skills identifiable if and only if the sampling matrix (observed components) is irreducible and aperiodic. We then propose an efficient gradient descent scheme and show that skill estimates converges to the desired global optima for such sampling matrices. Our proof is original and the results are surprising in light of the fact that even the weighted rank-one matrix factorization problem is NP hard in general. Next we derive sample complexity bounds for the noisy case in terms of spectral properties of the signless Laplacian of the sampling matrix. Our proposed scheme achieves state-of-art performance on a number of real-world datasets.