Session
Reinforcement Learning 16
Global Convergence of Policy Gradient Methods for the Linear Quadratic Regulator
Maryam Fazel · Rong Ge · Sham Kakade · Mehran Mesbahi
Direct policy gradient methods for reinforcement learning and continuous control problems are a popular approach for a variety of reasons: 1) they are easy to implement without explicit knowledge of the underlying model, 2) they are an ``end-to-end'' approach, directly optimizing the performance metric of interest, 3) they inherently allow for richly parameterized policies. A notable drawback is that even in the most basic continuous control problem (that of linear quadratic regulators), these methods must solve a non-convex optimization problem, where little is understood about their efficiency from both computational and statistical perspectives. In contrast, system identification and model based planning in optimal control theory have a much more solid theoretical footing, where much is known with regards to their computational and statistical properties. This work bridges this gap showing that (model free) policy gradient methods globally converge to the optimal solution and are efficient (polynomially so in relevant problem dependent quantities) with regards to their sample and computational complexities.
Policy Optimization as Wasserstein Gradient Flows
RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin
Policy optimization is a core component of reinforcement learning (RL), and most existing RL methods directly optimize parameters of a policy based on maximizing the expected total reward, or its surrogate. Though often achieving encouraging empirical success, its correspondence to policy-distribution optimization has been unclear mathematically. We place policy optimization into the space of probability measures, and interpret it as Wasserstein gradient flows. On the probability-measure space, under specified circumstances, policy optimization becomes convex in terms of distribution optimization. To make optimization feasible, we develop efficient algorithms by numerically solving the corresponding discrete gradient flows. Our technique is applicable to several RL settings, and is related to many state-of-the-art policy-optimization algorithms. Specifically, we define gradient flows on both the parameter-distribution space and policy-distribution space, leading to what we term indirect-policy and direct-policy learning frameworks, respectively. Extensive experiments verify the effectiveness of our framework, often obtaining better performance compared to related algorithms.
Many continuous control tasks have bounded action spaces. When policy gradient methods are applied to such tasks, out-of-bound actions need to be clipped before execution, while policies are usually optimized as if the actions are not clipped. We propose a policy gradient estimator that exploits the knowledge of actions being clipped to reduce the variance in estimation. We prove that our estimator, named clipped action policy gradient (CAPG), is unbiased and achieves lower variance than the conventional estimator that ignores action bounds. Experimental results demonstrate that CAPG generally outperforms the conventional estimator, indicating that it is a better policy gradient estimator for continuous control tasks. The source code is available at https://github.com/pfnet-research/capg.
Fourier Policy Gradients
Matthew Fellows · Kamil Ciosek · Shimon Whiteson
We propose a new way of deriving policy gradient updates for reinforcement learning. Our technique, based on Fourier analysis, recasts integrals that arise with expected policy gradients as convolutions and turns them into multiplications. The obtained analytical solutions allow us to capture the low variance benefits of EPG in a broad range of settings. For the critic, we treat trigonometric and radial basis functions, two function families with the universal approximation property. The choice of policy can be almost arbitrary, including mixtures or hybrid continuous-discrete probability distributions. Moreover, we derive a general family of sample-based estimators for stochastic policy gradients, which unifies existing results on sample-based approximation. We believe that this technique has the potential to shape the next generation of policy gradient approaches, powered by analytical results.
Self-Imitation Learning
Junhyuk Oh · Yijie Guo · Satinder Singh · Honglak Lee
This paper proposes Self-Imitation Learning (SIL), a simple off-policy actor-critic algorithm that learns to reproduce the agent's past good decisions. This algorithm is designed to verify our hypothesis that exploiting past good experiences can indirectly drive deep exploration. Our empirical results show that SIL significantly improves advantage actor-critic (A2C) on several hard exploration Atari games and is competitive to the state-of-the-art count-based exploration methods. We also show that SIL improves proximal policy optimization (PPO) on MuJoCo tasks.