Session
Supervised Learning 3
Candidates vs. Noises Estimation for Large Multi-Class Classification Problem
Lei Han · Yiheng Huang · Tong Zhang
This paper proposes a method for multi-class classification problems, where the number of classes K is large. The method, referred to as Candidates vs. Noises Estimation (CANE), selects a small subset of candidate classes and samples the remaining classes. We show that CANE is always consistent and computationally efficient. Moreover, the resulting estimator has low statistical variance approaching that of the maximum likelihood estimator, when the observed label belongs to the selected candidates with high probability. In practice, we use a tree structure with leaves as classes to promote fast beam search for candidate selection. We further apply the CANE method to estimate word probabilities in learning large neural language models. Extensive experimental results show that CANE achieves better prediction accuracy over the Noise-Contrastive Estimation (NCE), its variants and a number of the state-of-the-art tree classifiers, while it gains significant speedup compared to standard O(K) methods.
CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning
Wissam Siblini · Frank Meyer · Pascale Kuntz
Extreme Multi-label Learning (XML) considers large sets of items described by a number of labels that can exceed one million. Tree-based methods, which hierarchically partition the problem into small scale sub-problems, are particularly promising in this context to reduce the learning/prediction complexity and to open the way to parallelization. However, the current best approaches do not exploit tree randomization which has shown its efficiency in random forests and they resort to complex partitioning strategies. To overcome these limits, we here introduce a new random forest based algorithm with a very fast partitioning approach called CRAFTML. Experimental comparisons on nine datasets from the XML literature show that it outperforms the other tree-based approaches. Moreover with a parallelized implementation reduced to five cores, it is competitive with the best state-of-the-art methods which run on one hundred-core machines.
Attention-based Deep Multiple Instance Learning
Maximilian Ilse · Jakub Tomczak · Max Welling
Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a bag of instances. In this paper, we state the MIL problem as learning the Bernoulli distribution of the bag label where the bag label probability is fully parameterized by neural networks. Furthermore, we propose a neural network-based permutation-invariant aggregation operator that corresponds to the attention mechanism. Notably, an application of the proposed attention-based operator provides insight into the contribution of each instance to the bag label. We show empirically that our approach achieves comparable performance to the best MIL methods on benchmark MIL datasets and it outperforms other methods on a MNIST-based MIL dataset and two real-life histopathology datasets without sacrificing interpretability.
In the machine learning research community, it is generally believed that there is a tension between memorization and generalization. In this work we examine to what extent this tension exists by exploring if it is possible to generalize by memorizing alone. Although direct memorization with a lookup table obviously does not generalize, we find that introducing depth in the form of a network of support-limited lookup tables leads to generalization that is significantly above chance and closer to those obtained by standard learning algorithms on several tasks derived from MNIST and CIFAR-10. Furthermore, we demonstrate through a series of empirical results that our approach allows for a smooth tradeoff between memorization and generalization and exhibits some of the most salient characteristics of neural networks: depth improves performance; random data can be memorized and yet there is generalization on real data; and memorizing random data is harder in a certain sense than memorizing real data. The extreme simplicity of the algorithm and potential connections with generalization theory point to several interesting directions for future research.
Trainable Calibration Measures for Neural Networks from Kernel Mean Embeddings
Aviral Kumar · Sunita Sarawagi · Ujjwal Jain
Modern neural networks have recently been found to be poorly calibrated, primarily in the direction of over-confidence. Methods like entropy penalty and temperature smoothing improve calibration by clamping confidence, but in doing so compromise the many legitimately confident predictions. We propose a more principled fix that minimizes an explicit calibration error during training. We present MMCE, a RKHS kernel based measure of calibration that is efficiently trainable alongside the negative likelihood loss without careful hyper-parameter tuning. Theoretically too, MMCE is a sound measure of calibration that is minimized at perfect calibration, and whose finite sample estimates are consistent and enjoy fast convergence rates. Extensive experiments on several network architectures demonstrate that MMCE is a fast, stable, and accurate method to minimize calibration error while maximally preserving the number of high confidence predictions.