Skip to yearly menu bar Skip to main content


Session

Causal Inference 1

Abstract:
Chat is not available.

Fri 13 July 7:00 - 7:20 PDT

Causal Bandits with Propagating Inference

Akihiro Yabe · Daisuke Hatano · Hanna Sumita · Shinji Ito · Naonori Kakimura · Takuro Fukunaga · Ken-ichi Kawarabayashi

Bandit is a framework for designing sequential experiments, where a learner selects an arm $A \in \mathcal{A}$ and obtains an observation corresponding to $A$ in each experiment. Theoretically, the tight regret lower-bound for the general bandit is polynomial with respect to the number of arms $|\mathcal{A}|$, and thus, to overcome this bound, the bandit problem with side-information is often considered. Recently, a bandit framework over a causal graph was introduced, where the structure of the causal graph is available as side-information and the arms are identified with interventions on the causal graph. Existing algorithms for causal bandit overcame the $\Omega(\sqrt{|\mathcal{A}|/T})$ simple-regret lower-bound; however, their algorithms work only when the interventions $\mathcal{A}$ are localized around a single node (i.e., an intervention propagates only to its neighbors). We then propose a novel causal bandit algorithm for an arbitrary set of interventions, which can propagate throughout the causal graph. We also show that it achieves $O(\sqrt{ \gamma^*\log(|\mathcal{A}|T) / T})$ regret bound, where $\gamma^*$ is determined by using a causal graph structure. In particular, if the maximum in-degree of the causal graph is a constant, then $\gamma^* = O(N^2)$, where $N$ is the number of nodes.

Fri 13 July 7:20 - 7:40 PDT

Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions

Karren Yang · Abigail Katoff · Caroline Uhler

We consider the problem of learning causal DAGs in the setting where both observational and interventional data is available. This setting is common in biology, where gene regulatory networks can be intervened on using chemical reagents or gene deletions. Hauser & Buhlmann (2012) previously characterized the identifiability of causal DAGs under perfect interventions, which eliminate dependencies between targeted variables and their direct causes. In this paper, we extend these identifiability results to general interventions, which may modify the dependencies between targeted variables and their causes without eliminating them. We define and characterize the interventional Markov equivalence class that can be identified from general (not necessarily perfect) intervention experiments. We also propose the first provably consistent algorithm for learning DAGs in this setting and evaluate our algorithm on simulated and biological datasets.

Fri 13 July 7:40 - 7:50 PDT

Budgeted Experiment Design for Causal Structure Learning

AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Elias Bareinboim

We study the problem of causal structure learning when the experimenter is limited to perform at most $k$ non-adaptive experiments of size $1$. We formulate the problem of finding the best intervention target set as an optimization problem, which aims to maximize the average number of edges whose directions are resolved. We prove that the corresponding objective function is submodular and a greedy algorithm suffices to achieve $(1-\frac{1}{e})$-approximation of the optimal value. We further present an accelerated variant of the greedy algorithm, which can lead to orders of magnitude performance speedup. We validate our proposed approach on synthetic and real graphs. The results show that compared to the purely observational setting, our algorithm orients the majority of the edges through a considerably small number of interventions.

Fri 13 July 7:50 - 8:00 PDT

The Hierarchical Adaptive Forgetting Variational Filter

Vincent Moens

A common problem in Machine Learning and statistics consists in detecting whether the current sample in a stream of data belongs to the same distribution as previous ones, is an isolated outlier or inaugurates a new distribution of data.We present a hierarchical Bayesian algorithm that aims at learning a time-specific approximate posterior distribution of the parameters describing the distribution of the data observed.We derive the update equations of the variational parameters of the approximate posterior at each time step for models from the exponential family, and show that these updates find interesting correspondents in Reinforcement Learning (RL). In this perspective, our model can be seen as a hierarchical RL algorithm that learns a posterior distribution according to a certain stability confidence that is, in turn, learned according to its own stability confidence.Finally, we show some applications of our generic model, first in a RL context, next with an adaptive Bayesian Autoregressive model, and finally in the context of Stochastic Gradient Descent optimization.