Skip to yearly menu bar Skip to main content


Session

Deep Learning (Adversarial) 6

Abstract:
Chat is not available.

Fri 13 July 0:30 - 0:50 PDT

Mixed batches and symmetric discriminators for GAN training

Thomas LUCAS · Corentin Tallec · Yann Ollivier · Jakob Verbeek

Generative adversarial networks (GANs) are pow-erful generative models based on providing feed-back to a generative network via a discriminatornetwork. However, the discriminator usually as-sesses individual samples. This prevents the dis-criminator from accessing global distributionalstatistics of generated samples, and often leads tomode dropping: the generator models only partof the target distribution. We propose to feedthe discriminator with mixed batches of true andfake samples, and train it to predict the ratio oftrue samples in the batch. The latter score doesnot depend on the order of samples in a batch.Rather than learning this invariance, we introducea generic permutation-invariant discriminator ar-chitecture. This architecture is provably a uni-versal approximator of all symmetric functions.Experimentally, our approach reduces mode col-lapse in GANs on two synthetic datasets, andobtains good results on the CIFAR10 and CelebAdatasets, both qualitatively and quantitatively.

Fri 13 July 0:50 - 1:00 PDT

Mutual Information Neural Estimation

Mohamed Belghazi · Aristide Baratin · Sai Rajeswar · Sherjil Ozair · Yoshua Bengio · R Devon Hjelm · Aaron Courville

We argue that the estimation of mutual information between high dimensional continuous random variables can be achieved by gradient descent over neural networks. We present a Mutual Information Neural Estimator (MINE) that is linearly scalable in dimensionality as well as in sample size, trainable through back-prop, and strongly consistent.We present a handful of applications on which MINE can be used to minimize or maximize mutual information. We apply MINE to improve adversarially trained generative models. We also use MINE to implement the Information Bottleneck, applying it to supervised classification; our results demonstrate substantial improvement in flexibility and performance in these settings.

Fri 13 July 1:00 - 1:10 PDT

Adversarially Regularized Autoencoders

Jake Zhao · Yoon Kim · Kelly Zhang · Alexander Rush · Yann LeCun

Deep latent variable models, trained using variational autoencoders or generative adversarial networks, are now a key technique for representation learning of continuous structures. However, applying similar methods to discrete structures, such as text sequences or discretized images, has proven to be more challenging. In this work, we propose a more flexible method for training deep latent variable models of discrete structures. Our approach is based on the recently proposed Wasserstein Autoencoder (WAE) which formalizes adversarial autoencoders as an optimal transport problem. We first extend this framework to model discrete sequences, and then further explore different learned priors targeting a controllable representation. Unlike many other latent variable generative models for text, this adversarially regularized autoencoder (ARAE) allows us to generate fluent textual outputs as well as perform manipulations in the latent space to induce change in the output space. Finally we show that the latent representation can be trained to perform unaligned textual style transfer, giving improvements both in automatic measures and human evaluation.

Fri 13 July 1:10 - 1:20 PDT

JointGAN: Multi-Domain Joint Distribution Learning with Generative Adversarial Nets

Yunchen Pu · Shuyang Dai · Zhe Gan · Weiyao Wang · Guoyin Wang · Yizhe Zhang · Ricardo Henao · Lawrence Carin

A new generative adversarial network is developed for joint distribution matching.Distinct from most existing approaches, that only learn conditional distributions, the proposed model aims to learn a joint distribution of multiple random variables (domains). This is achieved by learning to sample from conditional distributions between the domains, while simultaneously learning to sample from the marginals of each individual domain.The proposed framework consists of multiple generators and a single softmax-based critic, all jointly trained via adversarial learning.From a simple noise source, the proposed framework allows synthesis of draws from the marginals, conditional draws given observations from a subset of random variables, or complete draws from the full joint distribution. Most examples considered are for joint analysis of two domains, with examples for three domains also presented.

Fri 13 July 1:20 - 1:30 PDT

Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data

Amjad Almahairi · Sai Rajeswar · Alessandro Sordoni · Philip Bachman · Aaron Courville

Learning inter-domain mappings from unpaired data can improve performance in structured prediction tasks, such as image segmentation, by reducing the need for paired data. CycleGAN was recently proposed for this problem, but critically assumes the underlying inter-domain mapping is approximately deterministic and one-to-one. This assumption renders the model ineffective for tasks requiring flexible, many-to-many mappings. We propose a new model, called Augmented CycleGAN, which learns many-to-many mappings between domains. We examine Augmented CycleGAN qualitatively and quantitatively on several image datasets.