Session
Graphical Models 2
Learning in Integer Latent Variable Models with Nested Automatic Differentiation
Daniel Sheldon · Kevin Winner · Debora Sujono
We develop nested automatic differentiation (AD) algorithms for exact inference and learning in integer latent variable models. Recently, Winner, Sujono, and Sheldon showed how to reduce marginalization in a class of integer latent variable models to evaluating a probability generating function which contains many levels of nested high-order derivatives. We contribute faster and more stable AD algorithms for this challenging problem and a novel algorithm to compute exact gradients for learning. These contributions lead to significantly faster and more accurate learning algorithms, and are the first AD algorithms whose running time is polynomial in the number of levels of nesting.
Sound Abstraction and Decomposition of Probabilistic Programs
Steven Holtzen · Guy Van den Broeck · Todd Millstein
Probabilistic programming languages are a flexible tool for specifying statistical models, but this flexibility comes at the cost of efficient analysis. It is currently difficult to compactly represent the subtle independence properties of a probabilistic program, and exploit independence properties to decompose inference. Classical graphical model abstractions do capture some properties of the underlying distribution, enabling inference algorithms to operate at the level of the graph topology. However, we observe that graph-based abstractions are often too coarse to capture interesting properties of programs. We propose a form of sound abstraction for probabilistic programs wherein the abstractions are themselves simplified programs. We provide a theoretical foundation for these abstractions, as well as an algorithm to generate them. Experimentally, we also illustrate the practical benefits of our framework as a tool to decompose probabilistic program inference.
Recent advances in Bayesian Network (BN) structure learning have focused on local-to-global learning, where the graph structure is learned via one local subgraph at a time. As a natural progression, we investigate parallel learning of BN structures via multiple learning agents simultaneously, where each agent learns one local subgraph at a time. We find that parallel learning can reduce the number of subgraphs requiring structure learning by storing previously queried results and communicating (even partial) results among agents. More specifically, by using novel rules on query subset and superset inference, many subgraph structures can be inferred without learning. We provide a sound and complete parallel structure learning (PSL) algorithm, and demonstrate its improved efficiency over state-of-the-art single-thread learning algorithms.
The Edge Density Barrier: Computational-Statistical Tradeoffs in Combinatorial Inference
Hao Lu · Yuan Cao · Junwei Lu · Han Liu · Zhaoran Wang
We study the hypothesis testing problem of inferring the existence of combinatorial structures in undirected graphical models. Although there exist extensive studies on the information-theoretic limits of this problem, it remains largely unexplored whether such limits can be attained by efficient algorithms. In this paper, we quantify the minimum computational complexity required to attain the information-theoretic limits based on an oracle computational model. We prove that, for testing common combinatorial structures, such as clique, nearest neighbor graph and perfect matching, against an empty graph, or large clique against small clique, the information-theoretic limits are provably unachievable by tractable algorithms in general. More importantly, we define structural quantities called the weak and strong edge densities, which offer deep insight into the existence of such computational-statistical tradeoffs. To the best of our knowledge, our characterization is the first to identify and explain the fundamental tradeoffs between statistics and computation for combinatorial inference problems in undirected graphical models.
Temporal Poisson Square Root Graphical Models
Sinong Geng · Zhaobin Kuang · Peggy Peissig · University of Wisconsin David Page
We propose temporal Poisson square root graphical models (TPSQRs), a generalization of Poisson square root graphical models (PSQRs) specifically designed for modeling longitudinal event data. Byestimating the temporal relationships for all possible pairs of event types, TPSQRs can offer a holistic perspective about whether the occurrences of any given event type could excite or inhibit any other type. A TPSQR is learned by estimating a collection of interrelated PSQRs that share the same template parameterization. These PSQRs are estimated jointly in a pseudo-likelihood fashion, where Poisson pseudo-likelihood is used to approximate the original more computationally intensive pseudo-likelihood problem stemming from PSQRs. Theoretically, we demonstrate that under mild assumptions, the Poisson pseudolikelihood approximation is sparsistent for recovering the underlying PSQR. Empirically, we learn TPSQRs from a real-world large-scale electronic health record (EHR) with millions of drug prescription and condition diagnosis events, for adverse drug reaction (ADR) detection. Experimental results demonstrate that the learned TPSQRs can recover ADR signals from the EHR effectively and efficiently.