Skip to yearly menu bar Skip to main content


Session

Monte Carlo Methods 1

Abstract:
Chat is not available.

Thu 12 July 4:30 - 4:50 PDT

Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap

Miles Lopes · Shusen Wang · Michael Mahoney

Over the course of the past decade, a variety of randomized algorithms have been proposed for computing approximate least-squares (LS) solutions in large-scale settings. A longstanding practical issue is that, for any given input, the user rarely knows the actual error of an approximate solution (relative to the exact solution). Likewise, it is difficult for the user to know precisely how much computation is needed to achieve the desired error tolerance. Consequently, the user often appeals to worst-case error bounds that tend to offer only qualitative guidance. As a more practical alternative, we propose a bootstrap method to compute a posteriori error estimates for randomized LS algorithms. These estimates permit the user to numerically assess the error of a given solution, and to predict how much work is needed to improve a "preliminary" solution. In addition, we provide theoretical consistency results for the method, which are the first such results in this context (to the best of our knowledge). From a practical standpoint, the method also has considerable flexibility, insofar as it can be applied to several popular sketching algorithms, as well as a variety of error metrics. Moreover, the extra step of error estimation does not add much cost to an underlying sketching algorithm. Finally, we demonstrate the effectiveness of the method with empirical results.

Thu 12 July 4:50 - 5:00 PDT

Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization

Umut Simsekli · Cagatay Yildiz · Thanh Huy Nguyen · Ali Taylan Cemgil · GaĆ«l RICHARD

Recent studies have illustrated that stochastic gradient Markov Chain Monte Carlo techniques have a strong potential in non-convex optimization, where local and global convergence guarantees can be shown under certain conditions. By building up on this recent theory, in this study, we develop an asynchronous-parallel stochastic L-BFGS algorithm for non-convex optimization. The proposed algorithm is suitable for both distributed and shared-memory settings. We provide formal theoretical analysis and show that the proposed method achieves an ergodic convergence rate of ${\cal O}(1/\sqrt{N})$ ($N$ being the total number of iterations) and it can achieve a linear speedup under certain conditions. We perform several experiments on both synthetic and real datasets. The results support our theory and show that the proposed algorithm provides a significant speedup over the recently proposed synchronous distributed L-BFGS algorithm.

Thu 12 July 5:00 - 5:10 PDT

Stochastic Variance-Reduced Hamilton Monte Carlo Methods

Difan Zou · Pan Xu · Quanquan Gu

We propose a fast stochastic Hamilton Monte Carlo (HMC) method, for sampling from a smooth and strongly log-concave distribution. At the core of our proposed method is a variance reduction technique inspired by the recent advance in stochastic optimization. We show that, to achieve $\epsilon$ accuracy in 2-Wasserstein distance, our algorithm achieves $\tilde O\big(n+\kappa^{2}d^{1/2}/\epsilon+\kappa^{4/3}d^{1/3}n^{2/3}/\epsilon^{2/3}\big)$ gradient complexity (i.e., number of component gradient evaluations), which outperforms the state-of-the-art HMC and stochastic gradient HMC methods in a wide regime. We also extend our algorithm for sampling from smooth and general log-concave distributions, and prove the corresponding gradient complexity as well. Experiments on both synthetic and real data demonstrate the superior performance of our algorithm.

Thu 12 July 5:10 - 5:20 PDT

A Robust Approach to Sequential Information Theoretic Planning

Sue Zheng · Jason Pacheco · John Fisher

In many sequential planning applications a natural approach to generating high quality plans is to maximize an information reward such as mutual information (MI). Unfortunately, MI lacks a closed form in all but trivial models, and so must be estimated. In applications where the cost of plan execution is expensive, one desires planning estimates which admit theoretical guarantees. Through the use of robust M-estimators we obtain bounds on absolute deviation of estimated MI. Moreover, we propose a sequential algorithm which integrates inference and planning by maximally reusing particles in each stage. We validate the utility of using robust estimators in the sequential approach on a Gaussian Markov Random Field wherein information measures have a closed form. Lastly, we demonstrate the benefits of our integrated approach in the context of sequential experiment design for inferring causal regulatory networks from gene expression levels. Our method shows improvements over a recent method which selects intervention experiments based on the same MI objective.

Thu 12 July 5:20 - 5:30 PDT

Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms

Yi Wu · Siddharth Srivastava · Nicholas Hay · Simon Du · Stuart Russell

Despite the recent successes of probabilistic programming languages (PPLs) in AI applications, PPLs offer only limited support for random variables whose distributions combine discrete and continuous elements. We develop the notion of measure-theoretic Bayesian networks (MTBNs) and use it to provide more general semantics for PPLs with arbitrarily many random variables defined over arbitrary measure spaces. We develop two new general sampling algorithms that are provably correct under the MTBN framework: the lexicographic likelihood weighting (LLW) for general MTBNs and the lexicographic particle filter (LPF), a specialized algorithm for state-space models. We further integrate MTBNs into a widely used PPL system, BLOG, and verify the effectiveness of the new inference algorithms through representative examples.