Session
Gaussian Processes 2
Learning unknown ODE models with Gaussian processes
Markus Heinonen · Cagatay Yildiz · Henrik Mannerström · Jukka Intosalmi · Harri Lähdesmäki
In conventional ODE modelling coefficients of an equation driving the system state forward in time are estimated. However, for many complex systems it is practically impossible to determine the equations or interactions governing the underlying dynamics. In these settings, parametric ODE model cannot be formulated. Here, we overcome this issue by introducing a novel paradigm of nonparametric ODE modelling that can learn the underlying dynamics of arbitrary continuous-time systems without prior knowledge. We propose to learn non-linear, unknown differential functions from state observations using Gaussian process vector fields within the exact ODE formalism. We demonstrate the model's capabilities to infer dynamics from sparse data and to simulate the system forward into future.
Constraining the Dynamics of Deep Probabilistic Models
Marco Lorenzi · Maurizio Filippone
We introduce a novel generative formulation of deep probabilistic models implementing "soft" constraints on their function dynamics. In particular, we develop a flexible methodological framework where the modeled functions and derivatives of a given order are subject to inequality or equality constraints. We then characterize the posterior distribution over model and constraint parameters through stochastic variational inference. As a result, the proposed approach allows for accurate and scalable uncertainty quantification on the predictions and on all parameters. We demonstrate the application of equality constraints in the challenging problem of parameter inference in ordinary differential equation models, while we showcase the application of inequality constraints on the problem of monotonic regression of count data. The proposed approach is extensively tested in several experimental settings, leading to highly competitive results in challenging modeling applications, while offering high expressiveness, flexibility and scalability.
Probabilistic Recurrent State-Space Models
Andreas Doerr · Christian Daniel · Martin Schiegg · Duy Nguyen-Tuong · Stefan Schaal · Marc Toussaint · Sebastian Trimpe
State-space models (SSMs) are a highly expressive model class for learning patterns in time series data and for system identification. Deterministic versions of SSMs (e.g., LSTMs) proved extremely successful in modeling complex time series data. Fully probabilistic SSMs, however, are often found hard to train, even for smaller problems. We propose a novel model formulation and a scalable training algorithm based on doubly stochastic variational inference and Gaussian processes. This combination allows efficient incorporation of latent state temporal correlations, which we found to be key to robust training. The effectiveness of the proposed PR-SSM is evaluated on a set of real-world benchmark datasets in comparison to state-of-the-art probabilistic model learning methods. Scalability and robustness are demonstrated on a high dimensional problem.
Structured Variationally Auto-encoded Optimization
Xiaoyu Lu · Javier González · Zhenwen Dai · Neil Lawrence
We tackle the problem of optimizing a black-box objective function defined over a highly-structured input space. This problem is ubiquitous in science and engineering. In machine learning, inferring the structure of a neural network or the Automatic Statistician (AS), where the optimal kernel combination for a Gaussian process is selected, are two important examples. We use the \as as a case study to describe our approach, that can be easily generalized to other domains. We propose an Structure Generating Variational Auto-encoder (SG-VAE) to embed the original space of kernel combinations into some low-dimensional continuous manifold where Bayesian optimization (BO) ideas are used. This is possible when structural knowledge of the problem is available, which can be given via a simulator or any other form of generating potentially good solutions. The right exploration-exploitation balance is imposed by propagating into the search the uncertainty of the latent space of the SG-VAE, that is computed using variational inference. The key aspect of our approach is that the SG-VAE can be used to bias the search towards relevant regions, making it suitable for transfer learning tasks. Several experiments in various application domains are used to illustrate the utility and generality of the approach described in this work.