Session
Society Impacts of Machine Learning 1
Delayed Impact of Fair Machine Learning
Lydia T. Liu · Sarah Dean · Esther Rolf · Max Simchowitz · Moritz Hardt
Fairness in machine learning has predominantly been studied in static classification settings without concern for how decisions change the underlying population over time. Conventional wisdom suggests that fairness criteria promote the long-term well-being of those groups they aim to protect. We study how static fairness criteria interact with temporal indicators of well-being, such as long-term improvement, stagnation, and decline in a variable of interest. We demonstrate that even in a one-step feedback model, common fairness criteria in general do not promote improvement over time, and may in fact cause harm in cases where an unconstrained objective would not. We completely characterize the delayed impact of three standard criteria, contrasting the regimes in which these exhibit qualitatively different behavior. In addition, we find that a natural form of measurement error broadens the regime in which fairness criteria perform favorably. Our results highlight the importance of measurement and temporal modeling in the evaluation of fairness criteria, suggesting a range of new challenges and trade-offs.
Fairness Without Demographics in Repeated Loss Minimization
Tatsunori Hashimoto · Megha Srivastava · Hongseok Namkoong · Percy Liang
Machine learning models (e.g., speech recognizers) trained on average loss suffer from representation disparity---minority groups (e.g., non-native speakers) carry less weight in the training objective, and thus tend to suffer higher loss.Worse, as model accuracy affects user retention, a minority group can shrink over time. In this paper, we first show that the status quo of empirical risk minimization (ERM) amplifies representation disparity over time, which can even turn initially fair models unfair. To mitigate this, we develop an approach based on distributionally robust optimization (DRO), which minimizes the worst case risk over all distributions close to the empirical distribution. We prove that this approach controls the risk of the minority group at each time step, in the spirit of Rawlsian distributive justice, while remaining oblivious to the identity of the groups. We demonstrate that DRO prevents disparity amplification on examples where ERM fails, and show improvements in minority group user satisfaction in a real-world text autocomplete task.
Nonconvex Optimization for Regression with Fairness Constraints
Junpei Komiyama · Akiko Takeda · Junya Honda · Hajime Shimao
The unfairness of a regressor is evaluated by measuring the correlation between the estimator and the sensitive attribute (e.g., race, gender, age), and the coefficient of determination (CoD) is a natural extension of the correlation coefficient when more than one sensitive attribute exists. As is well known, there is a trade-off between fairness and accuracy of a regressor, which implies a perfectly fair optimizer does not always yield a useful prediction. Taking this into consideration, we optimize the accuracy of the estimation subject to a user-defined level of fairness. However, a fairness level as a constraint induces a nonconvexity of the feasible region, which disables the use of an off-the-shelf convex optimizer. Despite such nonconvexity, we show an exact solution is available by using tools of global optimization theory. Furthermore, we propose a nonlinear extension of the method by kernel representation. Unlike most of existing fairness-aware machine learning methods, our method allows us to deal with numeric and multiple sensitive attributes.
Fair and Diverse DPP-Based Data Summarization
L. Elisa Celis · Vijay Keswani · Damian Straszak · Amit Jayant Deshpande · Tarun Kathuria · Nisheeth Vishnoi
Sampling methods that choose a subset of the data proportional to its diversity in the feature space are popular for data summarization. However, recent studies have noted the occurrence of bias – e.g., under or over representation of a particular gender or ethnicity – in such data summarization methods. In this paper we initiate a study of the problem of outputting a diverse and fair summary of a given dataset. We work with a well-studied determinantal measure of diversity and corresponding distributions (DPPs) and present a framework that allows us to incorporate a general class of fairness constraints into such distributions. Designing efficient algorithms to sample from these constrained determinantal distributions, however, suffers from a complexity barrier; we present a fast sampler that is provably good when the input vectors satisfy a natural property. Our empirical results on both real-world and synthetic datasets show that the diversity of the samples produced by adding fairness constraints is not too far from the unconstrained case.