Skip to yearly menu bar Skip to main content


Session

Deep Learning (Theory) 1

Abstract:
Chat is not available.

Wed 11 July 7:00 - 7:20 PDT

Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks

Lechao Xiao · Yasaman Bahri · Jascha Sohl-Dickstein · Samuel Schoenholz · Jeffrey Pennington

In recent years, state-of-the-art methods in computer vision have utilized increasingly deep convolutional neural network architectures (CNNs), with some of the most successful models employing hundreds or even thousands of layers. A variety of pathologies such as vanishing/exploding gradients make training such deep networks challenging. While residual connections and batch normalization do enable training at these depths, it has remained unclear whether such specialized architecture designs are truly necessary to train deep CNNs. In this work, we demonstrate that it is possible to train vanilla CNNs with ten thousand layers or more simply by using an appropriate initialization scheme. We derive this initialization scheme theoretically by developing a mean field theory for signal propagation and by characterizing the conditions for dynamical isometry, the equilibration of singular values of the input-output Jacobian matrix. These conditions require that the convolution operator be an orthogonal transformation in the sense that it is norm-preserving. We present an algorithm for generating such random initial orthogonal convolution kernels and demonstrate empirically that they enable efficient training of extremely deep architectures.

Wed 11 July 7:20 - 7:40 PDT

The Dynamics of Learning: A Random Matrix Approach

Zhenyu Liao · Romain Couillet

Understanding the learning dynamics of neural networks is one of the key issues for the improvement of optimization algorithms as well as for the theoretical comprehension of why deep neural nets work so well today. In this paper, we introduce a random matrix-based framework to analyze the learning dynamics of a single-layer linear network on a binary classification problem, for data of simultaneously large dimension and size, trained by gradient descent. Our results provide rich insights into common questions in neural nets, such as overfitting, early stopping and the initialization of training, thereby opening the door for future studies of more elaborate structures and models appearing in today's neural networks.

Wed 11 July 7:40 - 7:50 PDT

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Sanjeev Arora · Nadav Cohen · Elad Hazan

Conventional wisdom in deep learning states that increasing depth improves expressiveness but complicates optimization. This paper suggests that, sometimes, increasing depth can speed up optimization. The effect of depth on optimization is decoupled from expressiveness by focusing on settings where additional layers amount to overparameterization -- linear neural networks, a well-studied model. Theoretical analysis, as well as experiments, show that here depth acts as a preconditioner which may accelerate convergence. Even on simple convex problems such as linear regression with $\ell_p$ loss, $p>2$, gradient descent can benefit from transitioning to a non-convex overparameterized objective, more than it would from some common acceleration schemes. We also prove that it is mathematically impossible to obtain the acceleration effect of overparametrization via gradients of any regularizer.

Wed 11 July 7:50 - 8:00 PDT

Deep Linear Networks with Arbitrary Loss: All Local Minima Are Global

Thomas Laurent · James von Brecht

We consider deep linear networks with arbitrary convex differentiable loss. We provide a short and elementary proof of the fact that all local minima are global minima if the hidden layers are either 1) at least as wide as the input layer, or 2) at least as wide as the output layer. This result is the strongest possible in the following sense: If the loss is convex and Lipschitz but not differentiable then deep linear networks can have sub-optimal local minima.