Session
Deep Learning (Neural Network Architectures) 4
Adafactor: Adaptive Learning Rates with Sublinear Memory Cost
Noam Shazeer · Mitchell Stern
In several recently proposed stochastic optimization methods (e.g. RMSProp, Adam, Adadelta), parameter updates are scaled by the inverse square roots of exponential moving averages of squared past gradients. Maintaining these per-parameter second-moment estimators requires memory equal to the number of parameters. For the case of neural network weight matrices, we propose maintaining only the per-row and per-column sums of these moving averages, and estimating the per-parameter second moments based on these sums. We demonstrate empirically that this method produces similar results to the baseline. Secondly, we show that adaptive methods can produce larger-than-desired updates when the decay rate of the second moment accumulator is too slow. We propose update clipping and a gradually increasing decay rate scheme as remedies. Combining these methods and dropping momentum, we achieve comparable results to the published Adam regime in training the Transformer model on the WMT 2014 English-German machine translation task, while using very little auxiliary storage in the optimizer. Finally, we propose scaling the parameter updates based on the scale of the parameters themselves.
Orthogonal Recurrent Neural Networks with Scaled Cayley Transform
Kyle Helfrich · Devin Willmott · Qiang Ye
Recurrent Neural Networks (RNNs) are designed to handle sequential data but suffer from vanishing or exploding gradients. Recent work on Unitary Recurrent Neural Networks (uRNNs) have been used to address this issue and in some cases, exceed the capabilities of Long Short-Term Memory networks (LSTMs). We propose a simpler and novel update scheme to maintain orthogonal recurrent weight matrices without using complex valued matrices. This is done by parametrizing with a skew-symmetric matrix using the Cayley transform; such a parametrization is unable to represent matrices with negative one eigenvalues, but this limitation is overcome by scaling the recurrent weight matrix by a diagonal matrix consisting of ones and negative ones. The proposed training scheme involves a straightforward gradient calculation and update step. In several experiments, the proposed scaled Cayley orthogonal recurrent neural network (scoRNN) achieves superior results with fewer trainable parameters than other unitary RNNs.
Kronecker Recurrent Units
Cijo Jose · Mouhamadou Moustapha Cisse · Francois Fleuret
Our work addresses two important issues with recurrent neural networks: (1) they are over-parametrized, and (2) the recurrent weight matrix is ill-conditioned. The former increases the sample complexity of learning and the training time. The latter causes the vanishing and exploding gradient problem.We present a flexible recurrent neural network model called Kronecker Recurrent Units (KRU). KRU achieves parameter efficiency in RNNs through a Kronecker factored recurrent matrix. It overcomes the ill-conditioning of the recurrent matrix by enforcing soft unitary constraints on the factors. Thanks to the small dimensionality of the factors, maintaining these constraints is computationally efficient.Our experimental results on seven standard data-sets reveal that KRU can reduce the number of parameters by three orders of magnitude in the recurrent weight matrix compared to the existing recurrent models, without trading the statistical performance.These results in particular show that while there are advantages in having a high dimensional recurrent space, the capacity of the recurrent part of the model can be dramatically reduced.
Fast Parametric Learning with Activation Memorization
Jack Rae · Chris Dyer · Peter Dayan · Timothy Lillicrap
Neural networks trained with backpropagation often struggle to identify classes that have been observed a small number of times. In applications where most class labels are rare, such as language modelling, this can become a performance bottleneck. One potential remedy is to augment the network with a fast-learning non-parametric model which stores recent activations and class labels into an external memory. We explore a simplified architecture where we treat a subset of the model parameters as fast memory stores. This can help retain information over longer time intervals than a traditional memory, and does not require additional space or compute. In the case of image classification, we display faster binding of novel classes on an Omniglot image curriculum task. We also show improved performance for word-based language models on news reports (GigaWord), books (Project Gutenberg) and Wikipedia articles (WikiText-103) - the latter achieving a state-of-the-art perplexity of 29.2.
Dynamic Evaluation of Neural Sequence Models
Ben Krause · Emmanuel Kahembwe · Iain Murray · Steve Renals
We explore dynamic evaluation, where sequence models are adapted to the recent sequence history using gradient descent, assigning higher probabilities to re-occurring sequential patterns. We develop a dynamic evaluation approach that outperforms existing adaptation approaches in our comparisons. We apply dynamic evaluation to outperform all previous word-level perplexities on the Penn Treebank and WikiText-2 datasets (achieving 51.1 and 44.3 respectively) and all previous character-level cross-entropies on the text8 and Hutter Prize datasets (achieving 1.19 bits/char and 1.08 bits/char respectively).