Session
Representation Learning 3
Generative Temporal Models with Spatial Memory for Partially Observed Environments
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola
In model-based reinforcement learning, generative and temporal models of environments can be leveraged to boost agent performance, either by tuning the agent's representations during training or via use as part of an explicit planning mechanism. However, their application in practice has been limited to simplistic environments, due to the difficulty of training such models in larger, potentially partially-observed and 3D environments. In this work we introduce a novel action-conditioned generative model of such challenging environments. The model features a non-parametric spatial memory system in which we store learned, disentangled representations of the environment. Low-dimensional spatial updates are computed using a state-space model that makes use of knowledge on the prior dynamics of the moving agent, and high-dimensional visual observations are modelled with a Variational Auto-Encoder. The result is a scalable architecture capable of performing coherent predictions over hundreds of time steps across a range of partially observed 2D and 3D environments.
We define and address the problem of unsupervised learning of disentangled representations on data generated from independent factors of variation. We propose FactorVAE, a method that disentangles by encouraging the distribution of representations to be factorial and hence independent across the dimensions. We show that it improves upon beta-VAE by providing a better trade-off between disentanglement and reconstruction quality and being more robust to the number of training iterations. Moreover, we highlight the problems of a commonly used disentanglement metric and introduce a new metric that does not suffer from them.
Discovering Interpretable Representations for Both Deep Generative and Discriminative Models
Tameem Adel · Zoubin Ghahramani · Adrian Weller
Interpretability of representations in both deep generative and discriminative models is highly desirable. Current methods jointly optimize an objective combining accuracy and interpretability. However, this may reduce accuracy, and is not applicable to already trained models. We propose two interpretability frameworks. First, we provide an interpretable lens for an existing model. We use a generative model which takes as input the representation in an existing (generative or discriminative) model, weakly supervised by limited side information. Applying a flexible and invertible transformation to the input leads to an interpretable representation with no loss in accuracy. We extend the approach using an active learning strategy to choose the most useful side information to obtain, allowing a human to guide what "interpretable" means. Our second framework relies on joint optimization for a representation which is both maximally informative about the side information and maximally compressive about the non-interpretable data factors. This leads to a novel perspective on the relationship between compression and regularization. We also propose a new interpretability evaluation metric based on our framework. Empirically, we achieve state-of-the-art results on three datasets using the two proposed algorithms.
Learning Independent Causal Mechanisms
Giambattista Parascandolo · Niki Kilbertus · Mateo Rojas-Carulla · Bernhard Schölkopf
Statistical learning relies upon data sampled from a distribution, and we usually do not care what actually generated it in the first place. From the point of view of causal modeling, the structure of each distribution is induced by physical mechanisms that give rise to dependences between observables. Mechanisms, however, can be meaningful autonomous modules of generative models that make sense beyond a particular entailed data distribution, lending themselves to transfer between problems.We develop an algorithm to recover a set of independent (inverse) mechanisms from a set of transformed data points. The approach is unsupervised and based on a set of experts that compete for data generated by the mechanisms, driving specialization. We analyze the proposed method in a series of experiments on image data. Each expert learns to map a subset of the transformed data back to a reference distribution. The learned mechanisms generalize to novel domains. We discuss implications for transfer learning and links to recent trends in generative modeling.
Contextual Graph Markov Model: A Deep and Generative Approach to Graph Processing
Davide Bacciu · Federico Errica · Alessio Micheli
We introduce the Contextual Graph Markov Model, an approach combining ideas from generative models and neural networks for the processing of graph data. It founds on a constructive methodology to build a deep architecture comprising layers of probabilistic models that learn to encode the structured information in an incremental fashion. Context is diffused in an efficient and scalable way across the graph vertexes and edges. The resulting graph encoding is used in combination with discriminative models to address structure classification benchmarks.