Session
Deep Learning (Neural Network Architectures) 2
RadialGAN: Leveraging multiple datasets to improve target-specific predictive models using Generative Adversarial Networks
Jinsung Yoon · James Jordon · Mihaela van der Schaar
Training complex machine learning models for prediction often requires a large amount of data that is not always readily available. Leveraging these external datasets from related but different sources is therefore an important task if good predictive models are to be built for deployment in settings where data can be rare. In this paper we propose a novel approach to the problem in which we use multiple GAN architectures to learn to translate from one dataset to another, thereby allowing us to effectively enlarge the target dataset, and therefore learn better predictive models than if we simply used the target dataset. We show the utility of such an approach, demonstrating that our method improves the prediction performance on the target domain over using just the target dataset and also show that our framework outperforms several other benchmarks on a collection of real-world medical datasets.
Semi-Supervised Learning via Compact Latent Space Clustering
Konstantinos Kamnitsas · Daniel C. Castro · Loic Le Folgoc · Ian Walker · Ryutaro Tanno · Daniel Rueckert · Ben Glocker · Antonio Criminisi · Aditya Nori
We present a novel cost function for semi-supervised learning of neural networks that encourages compact clustering of the latent space to facilitate separation. The key idea is to dynamically create a graph over embeddings of labeled and unlabeled samples of a training batch to capture underlying structure in feature space, and use label propagation to estimate its high and low density regions. We then devise a cost function based on Markov chains on the graph that regularizes the latent space to form a single compact cluster per class, while avoiding to disturb existing clusters during optimization. We evaluate our approach on three benchmarks and compare to state-of-the art with promising results. Our approach combines the benefits of graph-based regularization with efficient, inductive inference, does not require modifications to a network architecture, and can thus be easily applied to existing networks to enable an effective use of unlabeled data.
Conditional Neural Processes
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami
Deep neural networks excel at function approximation, yet they are typically trained from scratch for each new function. On the other hand, Bayesian methods, such as Gaussian Processes (GPs), exploit prior knowledge to quickly infer the shape of a new function at test time. Yet, GPs are computationally expensive, and it can be hard to design appropriate priors. In this paper we propose a family of neural models, Conditional Neural Processes (CNPs), that combine the benefits of both. CNPs are inspired by the flexibility of stochastic processes such as GPs, but are structured as neural networks and trained via gradient descent. CNPs make accurate predictions after observing only a handful of training data points, yet scale to complex functions and large datasets. We demonstrate the performance and versatility of the approach on a range of canonical machine learning tasks, including regression, classification and image completion.
A Semantic Loss Function for Deep Learning with Symbolic Knowledge
Jingyi Xu · Zilu Zhang · Tal Friedman · Yitao Liang · Guy Van den Broeck
This paper develops a novel methodology for using symbolic knowledge in deep learning. From first principles, we derive a semantic loss function that bridges between neural output vectors and logical constraints. This loss function captureshow close the neural network is to satisfying the constraints on its output. An experimental evaluation shows that it effectively guides the learner to achieve (near-)state-of-the-art results on semi-supervised multi-class classification. Moreover, it significantly increases the ability of the neural network to predict structured objects, such as rankings and paths. These discrete concepts are tremendously difficult to learn, and benefit from a tight integration of deep learning and symbolic reasoning methods.