Session
Statistical Learning Theory 2
Data-Dependent Stability of Stochastic Gradient Descent
Ilja Kuzborskij · Christoph H. Lampert
We establish a data-dependent notion of algorithmic stability for Stochastic Gradient Descent (SGD), and employ it to develop novel generalization bounds. This is in contrast to previous distribution-free algorithmic stability results for SGD which depend on the worst-case constants. By virtue of the data-dependent argument, our bounds provide new insights into learning with SGD on convex and non-convex problems. In the convex case, we show that the bound on the generalization error depends on the risk at the initialization point. In the non-convex case, we prove that the expected curvature of the objective function around the initialization point has crucial influence on the generalization error. In both cases, our results suggest a simple data-driven strategy to stabilize SGD by pre-screening its initialization. As a corollary, our results allow us to show optimistic generalization bounds that exhibit fast convergence rates for SGD subject to a vanishing empirical risk and low noise of stochastic gradient.
Stability and Generalization of Learning Algorithms that Converge to Global Optima
Zachary Charles · Dimitris Papailiopoulos
We establish novel generalization bounds for learning algorithms that converge to global minima. We derive black-box stability results that only depend on the convergence of a learning algorithm and the geometry around the minimizers of the empirical risk function. The results are shown for non-convex loss functions satisfying the Polyak-Lojasiewicz (PL) and the quadratic growth (QG) conditions, which we show arise for 1-layer neural networks with leaky ReLU activations and deep neural networks with linear activations. We use our results to establish the stability of first-order methods such as stochastic gradient descent (SGD), gradient descent (GD), randomized coordinate descent (RCD), and the stochastic variance reduced gradient method (SVRG), in both the PL and the strongly convex setting. Our results match or improve state-of-the-art generalization bounds and can easily extend to similar optimization algorithms. Finally, although our results imply comparable stability for SGD and GD in the PL setting, we show that there exist simple quadratic models with multiple local minima where SGD is stable but GD is not.
Optimal Rates of Sketched-regularized Algorithms for Least-Squares Regression over Hilbert Spaces
Junhong Lin · Volkan Cevher
We investigate regularized algorithms combining with projection for least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space. We prove convergence results with respect to variants of norms, under a capacity assumption on the hypothesis space and a regularity condition on the target function. As a result, we obtain optimal rates for regularized algorithms with randomized sketches, provided that the sketch dimension is proportional to the effective dimension up to a logarithmic factor. As a byproduct, we obtain similar results for Nystr\"{o}m regularized algorithms. Our results provide optimal, distribution-dependent rates for sketched/Nystr\"{o}m regularized algorithms, considering both the attainable and non-attainable cases.
Dropout Training, Data-dependent Regularization, and Generalization Bounds
Wenlong Mou · Yuchen Zhou · Jun Gao · Liwei Wang
We study the problem of generalization guarantees for dropout training. A general framework is first proposed for learning procedures with random perturbation on model parameters. The generalization error is bounded by sum of two offset Rademacher complexities: the main term is Rademacher complexity of the hypothesis class with minus offset induced by the perturbation variance, which characterizes data-dependent regularization by the random perturbation; the auxiliary term is offset Rademacher complexity for the variance class, controlling the degree to which this regularization effect can be weakened. For neural networks, we estimate upper and lower bounds for the variance induced by truthful dropout, a variant of dropout that we propose to ensure unbiased output and fit into our framework, and the variance bounds exhibits connection to adaptive regularization methods. By applying our framework to ReLU networks with one hidden layer, a generalization upper bound is derived with no assumptions on the parameter norms or data distribution, with $O(1/n)$ fast rate and adaptivity to geometry of data points being achieved at the same time.