Session
Sparsity and Compressed Sensing 1
WHInter: A Working set algorithm for High-dimensional sparse second order Interaction models
Marine LE MORVAN · Jean-Philippe Vert
Learning sparse linear models with two-way interactions is desirable in many application domains such as genomics. $\ell_1$-regularised linear models are popular to estimate sparse models, yet standard implementations fail to address specifically the quadratic explosion of candidate two-way interactions in high dimensions, and typically do not scale to genetic data with hundreds of thousands of features. Here we present WHInter, a working set algorithm to solve large $\ell_1$-regularised problems with two-way interactions for binary design matrices. The novelty of WHInter stems from a new bound to efficiently identify working sets while avoiding to scan all features, and on fast computations inspired from solutions to the maximum inner product search problem. We apply WHInter to simulated and real genetic data and show that it is more scalable and two orders of magnitude faster than the state of the art.
Nearly Optimal Robust Subspace Tracking
Praneeth Narayanamurthy · Namrata Vaswani
Robust subspace tracking (RST) can be simply understood as a dynamic (time-varying) extension of robust PCA. More precisely, it is the problem of tracking data lying in a fixed or slowly-changing low-dimensional subspace while being robust to sparse outliers. This work develops a recursive projected compressive sensing algorithm called ``Nearly Optimal RST (NORST)'', and obtains one of the first guarantees for it. We show that NORST provably solves RST under weakened standard RPCA assumptions, slow subspace change, and a lower bound on (most) outlier magnitudes. Our guarantee shows that (i) NORST is online (after initialization) and enjoys near-optimal values of tracking delay, lower bound on required delay between subspace change times, and of memory complexity; and (ii) it has a significantly improved worst-case outlier tolerance compared with all previous robust PCA or RST methods without requiring any model on how the outlier support is generated.
Safe Element Screening for Submodular Function Minimization
Weizhong Zhang · Bin Hong · Lin Ma · Wei Liu · Tong Zhang
Submodular functions are discrete analogs of convex functions, which have applications in various fields, including machine learning and computer vision. However, in large-scale applications, solving Submodular Function Minimization (SFM) problems remains challenging. In this paper, we make the first attempt to extend the emerging technique named screening in large-scale sparse learning to SFM for accelerating its optimization process. We first conduct a careful studying of the relationships between SFM and the corresponding convex proximal problems, as well as the accurate primal optimum estimation of the proximal problems. Relying on this study, we subsequently propose a novel safe screening method to quickly identify the elements guaranteed to be included (we refer to them as active) or excluded (inactive) in the final optimal solution of SFM during the optimization process. By removing the inactive elements and fixing the active ones, the problem size can be dramatically reduced, leading to great savings in the computational cost without sacrificing any accuracy. To the best of our knowledge, the proposed method is the first screening method in the fields of SFM and even combinatorial optimization, thus pointing out a new direction for accelerating SFM algorithms. Experiment results on both synthetic and real datasets demonstrate the significant speedups gained by our approach.
Online Convolutional Sparse Coding with Sample-Dependent Dictionary
Yaqing WANG · Quanming Yao · James Kwok · Lionel NI
Convolutional sparse coding (CSC) has been popularly used for the learning of shift-invariant dictionaries in image and signal processing. However, existing methods have limited scalability. In this paper, instead of convolving with a dictionary shared by all samples, we propose the use of a sample-dependent dictionary in which each filter is a linear combination of a small set of base filters learned from data. This added flexibility allows a large number of sample-dependent patterns to be captured, which is especially useful in the handling of large or high-dimensional data sets. Computationally, the resultant model can be efficiently learned by online learning. Extensive experimental results on a number of data sets show that the proposed method outperforms existing CSC algorithms with significantly reduced time and space complexities.