Skip to yearly menu bar Skip to main content


Poster

Neural Autoregressive Flows

Chin-Wei Huang · David Krueger · Alexandre Lacoste · Aaron Courville

Hall B #152

Abstract:

Normalizing flows and autoregressive models have been successfully combined to produce state-of-the-art results in density estimation, via Masked Autoregressive Flows (MAF) (Papamakarios et al., 2017), and to accelerate state-of-the-art WaveNet-based speech synthesis to 20x faster than real-time (Oord et al., 2017), via Inverse Autoregressive Flows (IAF) (Kingma et al., 2016). We unify and generalize these approaches, replacing the (conditionally) affine univariate transformations of MAF/IAF with a more general class of invertible univariate transformations expressed as monotonic neural networks. We demonstrate that the proposed neural autoregressive flows (NAF) are universal approximators for continuous probability distributions, and their greater expressivity allows them to better capture multimodal target distributions. Experimentally, NAF yields state-of-the-art performance on a suite of density estimation tasks and outperforms IAF in variational autoencoders trained on binarized MNIST.

Live content is unavailable. Log in and register to view live content