Skip to yearly menu bar Skip to main content


Poster

Stochastic Variance-Reduced Cubic Regularized Newton Method

Dongruo Zhou · Pan Xu · Quanquan Gu

Hall B #187

Abstract: We propose a stochastic variance-reduced cubic regularized Newton method (SVRC) for non-convex optimization. At the core of our algorithm is a novel semi-stochastic gradient along with a semi-stochastic Hessian, which are specifically designed for cubic regularization method. We show that our algorithm is guaranteed to converge to an $(\epsilon,\sqrt{\epsilon})$-approximate local minimum within $\tilde{O}(n^{4/5}/\epsilon^{3/2})$ second-order oracle calls, which outperforms the state-of-the-art cubic regularization algorithms including subsampled cubic regularization. Our work also sheds light on the application of variance reduction technique to high-order non-convex optimization methods. Thorough experiments on various non-convex optimization problems support our theory.

Live content is unavailable. Log in and register to view live content