Skip to yearly menu bar Skip to main content


( events)   Timezone:  
Poster
Wed Jul 11 09:15 AM -- 12:00 PM (PDT) @ Hall B #179
Limits of Estimating Heterogeneous Treatment Effects: Guidelines for Practical Algorithm Design
Ahmed M. Alaa · Mihaela van der Schaar
[ PDF

Estimating heterogeneous treatment effects from observational data is a central problem in many domains. Because counterfactual data is inaccessible, the problem differs fundamentally from supervised learning, and entails a more complex set of modeling choices. Despite a variety of recently proposed algorithmic solutions, a principled guideline for building estimators of treatment effects using machine learning algorithms is still lacking. In this paper, we provide such a guideline by characterizing the fundamental limits of estimating heterogeneous treatment effects, and establishing conditions under which these limits can be achieved. Our analysis reveals that the relative importance of the different aspects of observational data vary with the sample size. For instance, we show that selection bias matters only in small-sample regimes, whereas with a large sample size, the way an algorithm models the control and treated outcomes is what bottlenecks its performance. Guided by our analysis, we build a practical algorithm for estimating treatment effects using a non-stationary Gaussian processes with doubly-robust hyperparameters. Using a standard semi-synthetic simulation setup, we show that our algorithm outperforms the state-of-the-art, and that the behavior of existing algorithms conforms with our analysis.