Skip to yearly menu bar Skip to main content


Sorting Out Lipschitz Function Approximation

Cem Anil · James Lucas · Roger Grosse

Pacific Ballroom #15

Keywords: [ Architectures ] [ Algorithms ] [ Adversarial Examples ]


Training neural networks under a strict Lipschitz constraint is useful for provable adversarial robustness, generalization bounds, interpretable gradients, and Wasserstein distance estimation. By the composition property of Lipschitz functions, it suffices to ensure that each individual affine transformation or nonlinear activation is 1-Lipschitz. The challenge is to do this while maintaining the expressive power. We identify a necessary property for such an architecture: each of the layers must preserve the gradient norm during backpropagation. Based on this, we propose to combine a gradient norm preserving activation function, GroupSort, with norm-constrained weight matrices. We show that norm-constrained GroupSort architectures are universal Lipschitz function approximators. Empirically, we show that norm-constrained GroupSort networks achieve tighter estimates of Wasserstein distance than their ReLU counterparts and can achieve provable adversarial robustness guarantees with little cost to accuracy.

Live content is unavailable. Log in and register to view live content