Skip to yearly menu bar Skip to main content


Oral

Theoretically Principled Trade-off between Robustness and Accuracy

Hongyang Zhang · Yaodong Yu · Jiantao Jiao · Eric Xing · Laurent El Ghaoui · Michael Jordan

Abstract:

We identify a trade-off between robustness and accuracy that serves as a guiding principle in the design of defenses against adversarial examples. Although the problem has been widely studied empirically, much remains unknown concerning the theory underlying this trade-off. In this work, we quantify the trade-off in terms of the gap between the risk for adversarial examples and the risk for non-adversarial examples. The challenge is to provide tight bounds on this quantity in terms of a surrogate loss. We give an optimal upper bound on this quantity in terms of classification-calibrated loss, which matches the lower bound in the worst case. Inspired by our theoretical analysis, we also design a new defense method, TRADES, to trade adversarial robustness off against accuracy. Our proposed algorithm performs well experimentally in real-world datasets. The methodology is the foundation of our entry to the adversarial competition of a 2018 conference in which we won the 1st place out of ~2,000 submissions, surpassing the runner-up approach by 11.41% in terms of mean L_2 perturbation distance.

Chat is not available.