Oral
SWALP : Stochastic Weight Averaging in Low Precision Training
Guandao Yang · Tianyi Zhang · Polina Kirichenko · Junwen Bai · Andrew Wilson · Christopher De Sa
Abstract:
Low precision operations can provide scalability, memory savings, portability, and energy efficiency. This paper proposes SWALP, an approach to low precision training that averages low-precision SGD iterates with a modified learning rate schedule. SWALP is easy to implement and can match the performance of full-precision SGD even with all numbers quantized down to 8 bits, including the gradient accumulators. Additionally, we show that SWALP converges arbitrarily close to the optimal solution for quadratic objectives, and to a noise ball asymptotically smaller than low precision SGD in strongly convex settings.
Chat is not available.
Successful Page Load