Skip to yearly menu bar Skip to main content


Invited Talk
in
Workshop: Understanding and Improving Generalization in Deep Learning

Keynote by Sham Kakade: Prediction, Learning, and Memory

Sham Kakade

[ ]
[ Video
2019 Invited Talk

Abstract:

Building accurate language models that capture meaningful long-term dependencies is a core challenge in language processing. We consider the problem of predicting the next observation given a sequence of past observations, specifically focusing on the question of how to make accurate predictions that explicitly leverage long-range dependencies. Empirically, and perhaps surprisingly, we show that state-of-the-art language models, including LSTMs and Transformers, do not capture even basic properties of natural language: the entropy rates of their generations drift dramatically upward over time. We also provide provable methods to mitigate this phenomenon: specifically, we provide a calibration-based approach to improve an estimated model based on any measurable long-term mismatch between the estimated model and the true underlying generative distribution. More generally, we will also present fundamental information theoretic and computational limits of sequential prediction with a memory.

Bio: Sham Kakade is a Washington Research Foundation Data Science Chair, with a joint appointment in the Department of Computer Science and the Department of Statistics at the University of Washington. He works on the theoretical foundations of machine learning, focusing on designing provable and practical statistically and computationally efficient algorithms. Amongst his contributions, with a diverse set of collaborators, are: establishing principled approaches in reinforcement learning (including the natural policy gradient, conservative policy iteration, and the PAC-MDP framework); optimal algorithms in the stochastic and non-stochastic multi-armed bandit problems (including the widely used linear bandit and the Gaussian process bandit models); computationally and statistically efficient tensor decomposition methods for estimation of latent variable models (including estimation of mixture of Gaussians, latent Dirichlet allocation, hidden Markov models, and overlapping communities in social networks); faster algorithms for large scale convex and nonconvex optimization (including how to escape from saddle points efficiently). He is the recipient of the IBM Goldberg best paper award (in 2007) for contributions to fast nearest neighbor search and the best paper, INFORMS Revenue Management and Pricing Section Prize (2014). He has been program chair for COLT 2011.

Sham completed his Ph.D. at the Gatsby Computational Neuroscience Unit at University College London, under the supervision of Peter Dayan, and he was a postdoc at the Dept. of Computer Science, University of Pennsylvania , under the supervision of Michael Kearns. Sham was an undergraduate at Caltech , studying in physics under the supervision of John Preskill. Sham has been a Principal Research Scientist at Microsoft Research, New England, an associate professor at the Department of Statistics, Wharton, UPenn, and an assistant professor at the Toyota Technological Institute at Chicago.

Chat is not available.