Skip to yearly menu bar Skip to main content


Break and Poster
in
Workshop: Theoretical Physics for Deep Learning

Break and poster discussion

[ ]
2019 Break and Poster

Abstract:

Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes Roman Novak (Google Brain); Lechao Xiao (Google Brain); Jaehoon Lee (Google Brain); Yasaman Bahri (Google Brain); Greg Yang (Microsoft Research AI); Jiri Hron (University of Cambridge); Daniel Abolafia (Google Brain); Jeffrey Pennington (Google Brain); Jascha Sohl-Dickstein (Google Brain)
Topology of Learning in Artificial Neural Networks Maxime Gabella (Magma Learning)

Jet grooming through reinforcement learning Frederic Dreyer (University of Oxford); Stefano Carrazza (University of Milan)
Inferring the quantum density matrix with machine learning Kyle Cranmer (New York University); Siavash Golkar (NYU)
; Duccio Pappadopulo (Bloomberg) Backdrop: Stochastic Backpropagation Siavash Golkar (NYU); Kyle Cranmer (New York University) Explain pathology in Deep Gaussian Process using Chaos Theory Anh Tong (UNIST); Jaesik Choi (Ulsan National Institute of Science and Technology)
Towards a Definition of Disentangled Representations Irina Higgins (DeepMind); David Amos (DeepMind); Sebastien Racaniere (DeepMind); David Pfau (DeepMind); Loic Matthey (DeepMind); Danilo Jimenez Rezende (DeepMind)
Towards Understanding Regularization in Batch Normalization Ping Luo (The Chinese University of Hong Kong); Xinjiang Wang (); Wenqi Shao (The Chinese University of HongKong)
; Zhanglin Peng (SenseTime)
Covariance in Physics and Convolutional Neural Networks Miranda Cheng (University of Amsterdam); Vassilis Anagiannis (University of Amsterdam); Maurice Weiler (University of Amsterdam); Pim de Haan (University of Amsterdam); Taco S. Cohen (Qualcomm AI Research); Max Welling (University of Amsterdam)
Meanfield theory of activation functions in Deep Neural Networks Mirco Milletari (Microsoft)
; Thiparat Chotibut (SUTD) ; Paolo E. Trevisanutto (National University of Singapore) Finite size corrections for neural network Gaussian processes Joseph M Antognini (Whisper AI)*
SWANN: Small-World Neural Networks and Rapid Convergence Mojan Javaheripi (UC San Diego); Bita Darvish Rouhani (UC San Diego); Farinaz Koushanfar (UC San Diego)
Analysing the dynamics of online learning in over-parameterised two-layer neural networks Sebastian Goldt (Institut de Physique théorique, Paris)
; Madhu Advani (Harvard University); Andrew Saxe (University of Oxford); Florent Krzakala (École Normale Supérieure); Lenka Zdeborova (CEA Saclay)
A Halo Merger Tree Generation and Evaluation Framework Sandra Robles (Universidad Autónoma de Madrid); Jonathan Gómez (Pontificia Universidad Católica de Chile); Adín Ramírez Rivera (University of Campinas); Jenny Gonzáles (Pontificia Universidad Católica de Chile); Nelson Padilla (Pontificia Universidad Católica de Chile); Diego Dujovne (Universidad Diego Portales)
Learning Symmetries of Classical Integrable Systems Roberto Bondesan (Qualcomm AI Research)
, Austen Lamacraft (Cavendish Laboratory, University of Cambridge, UK) Cosmology inspired generative models Uros Seljak (UC Berkeley); Francois Lanusse (UC Berkeley)
Pathological Spectrum of the Fisher Information Matrix in Deep Neural Networks Ryo Karakida (National Institute of Advanced Industrial Science and Technology)
; Shotaro Akaho (AIST); Shun-ichi Amari (RIKEN)
How Noise during Training Affects the Hessian Spectrum Mingwei Wei (Northwestern University); David Schwab (Facebook AI Research)*
A Quantum Field Theory of Representation Learning Robert Bamler (University of California at Irvine); Stephan Mandt (University of California, Irivine) Convergence Properties of Neural Networks on Separable Data Remi Tachet des Combes (Microsoft Research Montreal); Mohammad Pezeshki (Mila & University of Montreal); Samira Shabanian (Microsoft, Canada); Aaron Courville (MILA, Université de Montréal); Yoshua Bengio (Mila)
Universality and Capacity Metrics in Deep Neural Networks Michael Mahoney (University of California, Berkeley); Charles Martin (Calculation Consulting) Feynman Diagrams for Large Width Networks Guy Gur-Ari (Google); Ethan Dyer (Google)
Deep Learning on the 2-Dimensional Ising Model to Extract the Crossover Region Nicholas Walker (Louisiana State Univ - Baton Rouge)*
Large Scale Structure of the Loss Landscape of Neural Networks Stanislav Fort (Stanford University); Stanislaw Jastrzebski (New York University)
Momentum Enables Large Batch Training Samuel L Smith (DeepMind)
; Erich Elsen (Google); Soham De (DeepMind) Learning the Arrow of Time Nasim Rahaman (University of Heidelberg); Steffen Wolf (Heidelberg University); Anirudh Goyal (University of Montreal); Roman Remme (Heidelberg University); Yoshua Bengio (Mila) Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks Rohan Ghosh (National University of Singapore); Anupam Gupta (National University of Singapore)
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off Yaniv Blumenfeld (Technion); Dar Gilboa (Columbia University); Daniel Soudry (Technion)
Rethinking Complexity in Deep Learning: A View from Function Space Aristide Baratin (Mila, Université de Montréal)
; Thomas George (MILA, Université de Montréal); César Laurent (Mila, Université de Montréal); Valentin Thomas (MILA); Guillaume Lajoie (Université de Montréal, Mila); Simon Lacoste-Julien (Mila, Université de Montréal)
The Deep Learning Limit: Negative Neural Network eigenvalues just noise? Diego Granziol (Oxford); Stefan Zohren (University of Oxford); Stephen Roberts (Oxford); Dmitry P Vetrov (Higher School of Economics); Andrew Gordon Wilson (Cornell University); Timur Garipov (Samsung AI Center in Moscow) Gradient descent in Gaussian random fields as a toy model for high-dimensional optimisation Mariano Chouza (Tower Research Capital); Stephen Roberts (Oxford); Stefan Zohren (University of Oxford)
Deep Learning for Inverse Problems Abhejit Rajagopal (University of California, Santa Barbara)*; Vincent R Radzicki (University of California, Santa Barbara)

Chat is not available.