Spotlight
in
Workshop: Theoretical Physics for Deep Learning
Poster spotlights
Roman Novak · Frederic Dreyer · Siavash Golkar · Irina Higgins · Joe Antognini · Ryo Karakida · Rohan Ghosh
A Quantum Field Theory of Representation Learning Robert Bamler (University of California at Irvine)*; Stephan Mandt (University of California, Irivine)
Covariance in Physics and Convolutional Neural Networks Miranda Cheng (University of Amsterdam)*; Vassilis Anagiannis (University of Amsterdam); Maurice Weiler (University of Amsterdam); Pim de Haan (University of Amsterdam); Taco S. Cohen (Qualcomm AI Research); Max Welling (University of Amsterdam)
Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks Rohan Ghosh (National University of Singapore)*; Anupam Gupta (National University of Singapore)
Towards a Definition of Disentangled Representations Irina Higgins (DeepMind)*; David Amos (DeepMind); Sebastien Racaniere (DeepMind); David Pfau (); Loic Matthey (DeepMind); Danilo Jimenez Rezende (Google DeepMind)
Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes Roman Novak (Google Brain)*; Lechao Xiao (Google Brain); Jaehoon Lee (Google Brain); Yasaman Bahri (Google Brain); Greg Yang (Microsoft Research AI); Jiri Hron (University of Cambridge); Daniel Abolafia (Google Brain); Jeffrey Pennington (Google Brain); Jascha Sohl-Dickstein (Google Brain)
Finite size corrections for neural network Gaussian processes Joseph M Antognini (Whisper AI)*
Pathological Spectrum of the Fisher Information Matrix in Deep Neural Networks Ryo Karakida (National Institute of Advanced Industrial Science and Technology)*; Shotaro Akaho (AIST); Shun-ichi Amari (RIKEN)
Inferring the quantum density matrix with machine learning Kyle Cranmer (New York University); Siavash Golkar (NYU)*; Duccio Pappadopulo (Bloomberg)
Jet grooming through reinforcement learning Frederic Dreyer (University of Oxford)*; Stefano Carrazza (University of Milan)