Skip to yearly menu bar Skip to main content


Poster

Deep Predictive Coding Network for Object Recognition

Haiguang Wen · Kuan Han · Junxing Shi · Yizhen Zhang · Eugenio Culurciello · Zhongming Liu

Hall B #126

Abstract:

Based on the predictive coding theory in neuro- science, we designed a bi-directional and recur- rent neural net, namely deep predictive coding networks (PCN), that has feedforward, feedback, and recurrent connections. Feedback connections from a higher layer carry the prediction of its lower-layer representation; feedforward connec- tions carry the prediction errors to its higher-layer. Given image input, PCN runs recursive cycles of bottom-up and top-down computation to update its internal representations and reduce the differ- ence between bottom-up input and top-down pre- diction at every layer. After multiple cycles of recursive updating, the representation is used for image classification. With benchmark datasets (CIFAR-10/100, SVHN, and MNIST), PCN was found to always outperform its feedforward-only counterpart: a model without any mechanism for recurrent dynamics, and its performance tended to improve given more cycles of computation over time. In short, PCN reuses a single architecture to recursively run bottom-up and top-down pro- cesses to refine its representation towards more accurate and definitive object recognition.

Live content is unavailable. Log in and register to view live content