Poster
Estimation of Markov Chain via Rank-constrained Likelihood
XUDONG LI · Mengdi Wang · Anru Zhang
Hall B #50
[
Abstract
]
Abstract:
This paper studies the estimation of low-rank Markov chains from empirical trajectories. We propose a non-convex estimator based on rank-constrained likelihood maximization. Statistical upper bounds are provided for the Kullback-Leiber divergence and the $\ell_2$ risk between the estimator and the true transition matrix. The estimator reveals a compressed state space of the Markov chain. We also develop a novel DC (difference of convex function) programming algorithm to tackle the rank-constrained non-smooth optimization problem. Convergence results are established. Experiments show that the proposed estimator achieves better empirical performance than other popular approaches.
Live content is unavailable. Log in and register to view live content