Skip to yearly menu bar Skip to main content


Poster

Policy Optimization as Wasserstein Gradient Flows

RUIYI (ROY) ZHANG · Changyou Chen · Chunyuan Li · Lawrence Carin

Hall B #59

Abstract:

Policy optimization is a core component of reinforcement learning (RL), and most existing RL methods directly optimize parameters of a policy based on maximizing the expected total reward, or its surrogate. Though often achieving encouraging empirical success, its correspondence to policy-distribution optimization has been unclear mathematically. We place policy optimization into the space of probability measures, and interpret it as Wasserstein gradient flows. On the probability-measure space, under specified circumstances, policy optimization becomes convex in terms of distribution optimization. To make optimization feasible, we develop efficient algorithms by numerically solving the corresponding discrete gradient flows. Our technique is applicable to several RL settings, and is related to many state-of-the-art policy-optimization algorithms. Specifically, we define gradient flows on both the parameter-distribution space and policy-distribution space, leading to what we term indirect-policy and direct-policy learning frameworks, respectively. Extensive experiments verify the effectiveness of our framework, often obtaining better performance compared to related algorithms.

Live content is unavailable. Log in and register to view live content