Tutorial
Deep Reinforcement Learning, Decision Making, and Control
Sergey Levine · Chelsea Finn
Parkside 1
Deep learning methods, which combine high-capacity neural network models with simple and scalable training algorithms, have made a tremendous impact across a range of supervised learning domains, including computer vision, speech recognition, and natural language processing. This success has been enabled by the ability of deep networks to capture complex, high-dimensional functions and learn flexible distributed representations. Can this capability be brought to bear on real-world decision making and control problems, where the machine must not only classify complex sensory patterns, but choose actions and reason about their long-term consequences?
Decision making and control problems lack the close supervision present in more classic deep learning applications, and present a number of challenges that necessitate new algorithmic developments. In this tutorial, we will cover the foundational theory of reinforcement and optimal control as it relates to deep reinforcement learning, discuss a number of recent results on extending deep learning into decision making and control, including model-based algorithms, imitation learning, and inverse reinforcement learning, and explore the frontiers and limitations of current deep reinforcement learning algorithms
Live content is unavailable. Log in and register to view live content