Poster
Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture
Mingmin Zhao · Shichao Yue · Dina Katabi · Tommi Jaakkola · Matt Bianchi
Gallery #60
We focus on predicting sleep stages from radio measurements without any attached sensors on subjects. We introduce a new predictive model that combines convolutional and recurrent neural networks to extract sleep-specific subject-invariant features from RF signals and capture the temporal progression of sleep. A key innovation underlying our approach is a modified adversarial training regime that discards extraneous information specific to individuals or measurement conditions, while retaining all information relevant to the predictive task. We analyze our game theoretic setup and empirically demonstrate that our model achieves significant improvements over state-of-the-art solutions.
Live content is unavailable. Log in and register to view live content