Poster
Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo
Matthew Hoffman
Gallery #104
Deep latent Gaussian models are powerful and popular probabilistic models of high-dimensional data. These models are almost always fit using variational expectation-maximization, an approximation to true maximum-marginal-likelihood estimation. In this paper, we propose a different approach: rather than use a variational approximation (which produces biased gradient signals), we use Markov chain Monte Carlo (MCMC, which allows us to trade bias for computation). We find that our MCMC-based approach has several advantages: it yields higher held-out likelihoods, produces sharper images, and does not suffer from the variational overpruning effect. MCMC's additional computational overhead proves to be significant, but not prohibitive.
Live content is unavailable. Log in and register to view live content