Skip to yearly menu bar Skip to main content


Poster

Online and Linear-Time Attention by Enforcing Monotonic Alignments

Colin Raffel · Thang Luong · Peter Liu · Ron Weiss · Douglas Eck

Gallery #70

Abstract:

Recurrent neural network models with an attention mechanism have proven to be extremely effective on a wide variety of sequence-to-sequence problems. However, the fact that soft attention mechanisms perform a pass over the entire input sequence when producing each element in the output sequence precludes their use in online settings and results in a quadratic time complexity. Based on the insight that the alignment between input and output sequence elements is monotonic in many problems of interest, we propose an end-to-end differentiable method for learning monotonic alignments which, at test time, enables computing attention online and in linear time. We validate our approach on sentence summarization, machine translation, and online speech recognition problems and achieve results competitive with existing sequence-to-sequence models.

Live content is unavailable. Log in and register to view live content