( events)   Timezone: »  
Wed Aug 09 01:30 AM -- 05:00 AM (PDT) @ Gallery #141
Rule-Enhanced Penalized Regression by Column Generation using Rectangular Maximum Agreement
Jonathan Eckstein · Noam Goldberg · Ai Kagawa

We describe a learning procedure enhancing L1-penalized regression by adding dynamically generated rules describing multidimensional “box” sets. Our rule-adding procedure is based on the classical column generation method for high-dimensional linear programming. The pricing problem for our column generation procedure reduces to the NP-hard rectangular maximum agreement (RMA) problem of finding a box that best discriminates between two weighted datasets. We solve this problem exactly using a parallel branch-and-bound procedure. The resulting rule-enhanced regression procedure is computation-intensive, but has promising prediction performance.