Oral
|
Wed 15:05
|
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi · Mohammad Emtiyaz Khan · Jun Zhu
|
|
Poster
|
Wed 18:30
|
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi · Mohammad Emtiyaz Khan · Jun Zhu
|
|
Workshop
|
Fri 17:20
|
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
Michal Valko
|
|
Oral
|
Thu 15:00
|
Rates of Convergence for Sparse Variational Gaussian Process Regression
David Burt · Carl E Rasmussen · Mark van der Wilk
|
|
Poster
|
Tue 18:30
|
Rates of Convergence for Sparse Variational Gaussian Process Regression
David Burt · Carl E Rasmussen · Mark van der Wilk
|
|
Oral
|
Wed 11:20
|
Graph Convolutional Gaussian Processes
Ian Walker · Ben Glocker
|
|
Oral
|
Tue 16:20
|
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens · Kieran Campbell · Christopher Yau
|
|
Poster
|
Tue 18:30
|
Deep Factors for Forecasting
Yuyang Wang · Alex Smola · Danielle Robinson · Jan Gasthaus · Dean Foster · Tim Januschowski
|
|
Poster
|
Wed 18:30
|
Characterizing Well-Behaved vs. Pathological Deep Neural Networks
Antoine Labatie
|
|
Poster
|
Tue 18:30
|
Decomposing feature-level variation with Covariate Gaussian Process Latent Variable Models
Kaspar Märtens · Kieran Campbell · Christopher Yau
|
|
Poster
|
Wed 18:30
|
Distribution calibration for regression
Hao Song · Tom Diethe · Meelis Kull · Peter Flach
|
|
Poster
|
Wed 18:30
|
Graph Convolutional Gaussian Processes
Ian Walker · Ben Glocker
|
|