Skip to yearly menu bar Skip to main content


Stable and Fair Classification

Lingxiao Huang · Nisheeth Vishnoi

Pacific Ballroom #130

Keywords: [ Supervised Learning ] [ Fairness ] [ Computational Social Sciences ]


In a recent study, Friedler et al. pointed out that several fair classification algorithms are not stable with respect to variations in the training set -- a crucial consideration in several applications. Motivated by their work, we study the problem of designing classification algorithms that are both fair and stable. We propose an extended framework based on fair classification algorithms that are formulated as optimization problems, by introducing a stability-focused regularization term. Theoretically, we prove an additional stability guarantee, that was lacking in fair classification algorithms, and also provide an accuracy guarantee for our extended framework. Our accuracy guarantee can be used to inform the selection of the regularization parameter in our framework. We assess the benefits of our approach empirically by extending several fair classification algorithms that are shown to achieve the best balance between fairness and accuracy over the \textbf{Adult} dataset. Our empirical results show that our extended framework indeed improves the stability at only a slight sacrifice in accuracy.

Live content is unavailable. Log in and register to view live content