Loss Landscapes of Regularized Linear Autoencoders
Daniel Kunin · Jonathan Bloom · Aleksandrina Goeva · Cotton Seed
Keywords:
Deep Learning Theory
Dimensionality Reduction
Generative Models
Matrix Factorization
Representation Learning
2019 Poster
Abstract
Autoencoders are a deep learning model for representation learning. When trained to minimize the distance between the data and its reconstruction, linear autoencoders (LAEs) learn the subspace spanned by the top principal directions but cannot learn the principal directions themselves. In this paper, we prove that $L_2$-regularized LAEs are symmetric at all critical points and learn the principal directions as the left singular vectors of the decoder. We smoothly parameterize the critical manifold and relate the minima to the MAP estimate of probabilistic PCA. We illustrate these results empirically and consider implications for PCA algorithms, computational neuroscience, and the algebraic topology of learning.
Chat is not available.
Successful Page Load