Poster
GOODE: A Gaussian Off-The-Shelf Ordinary Differential Equation Solver
David John · Vincent Heuveline · Michael Schober
Pacific Ballroom #214
Keywords: [ Bayesian Nonparametrics ] [ Gaussian Processes ] [ Optimization - Others ] [ Other Applications ]
There are two types of ordinary differential equations (ODEs): initial value problems (IVPs) and boundary value problems (BVPs). While many probabilistic numerical methods for the solution of IVPs have been presented to-date, there exists no efficient probabilistic general-purpose solver for nonlinear BVPs. Our method based on iterated Gaussian process (GP) regression returns a GP posterior over the solution of nonlinear ODEs, which provides a meaningful error estimation via its predictive posterior standard deviation. Our solver is fast (typically of quadratic convergence rate) and the theory of convergence can be transferred from prior non-probabilistic work. Our method performs on par with standard codes for an established benchmark of test problems.
Live content is unavailable. Log in and register to view live content