Skip to yearly menu bar Skip to main content


Distributed Weighted Matching via Randomized Composable Coresets

Sepehr Assadi · Mohammad Hossein Bateni · Vahab Mirrokni

Pacific Ballroom #161

Keywords: [ Parallel and Distributed Learning ] [ Combinatorial Optimization ]


Maximum weight matching is one of the most fundamental combinatorial optimization problems with a wide range of applications in data mining and bioinformatics. Developing distributed weighted matching algorithms has been challenging due to the sequential nature of efficient algorithms for this problem. In this paper, we develop a simple distributed algorithm for the problem on general graphs with approximation guarantee of 2 + eps that (nearly) matches that of the sequential greedy algorithm. A key advantage of this algorithm is that it can be easily implemented in only two rounds of computation in modern parallel computation frameworks such as MapReduce. We also demonstrate the efficiency of our algorithm in practice on various graphs (some with half a trillion edges) by achieving objective values always close to what is achievable in the centralized setting.

Live content is unavailable. Log in and register to view live content