Skip to yearly menu bar Skip to main content


Scale-free adaptive planning for deterministic dynamics & discounted rewards

Peter Bartlett · Victor Gabillon · Jennifer Healey · Michal Valko

Pacific Ballroom #168

Keywords: [ Theory and Algorithms ] [ Online Learning ]


We address the problem of planning in an environment with deterministic dynamics and stochastic discounted rewards under a limited numerical budget where the ranges of both rewards and noise are unknown. We introduce PlaTypOOS, an adaptive, robust, and efficient alternative to the OLOP (open-loop optimistic planning) algorithm. Whereas OLOP requires a priori knowledge of the ranges of both rewards and noise, PlaTypOOS dynamically adapts its behavior to both. This allows PlaTypOOS to be immune to two vulnerabilities of OLOP: failure when given underestimated ranges of noise and rewards and inefficiency when these are overestimated. PlaTypOOS additionally adapts to the global smoothness of the value function. PlaTypOOS acts in a provably more efficient manner vs. OLOP when OLOP is given an overestimated reward and show that in the case of no noise, PlaTypOOS learns exponentially faster.

Live content is unavailable. Log in and register to view live content