Skip to yearly menu bar Skip to main content


Poster

Locally Private Bayesian Inference for Count Models

Aaron Schein · Steven Wu · Alexandra Schofield · Mingyuan Zhou · Hanna Wallach

Pacific Ballroom #175

Keywords: [ Bayesian Methods ] [ Graphical Models ] [ Monte Carlo Methods ] [ Privacy-preserving Statistics and Machine Learning ]


Abstract:

We present a general and modular method for privacy-preserving Bayesian inference for Poisson factorization, a broad class of models that includes some of the most widely used models in the social sciences. Our method satisfies limited-precision local privacy, a generalization of local differential privacy that we introduce to formulate appropriate privacy guarantees for sparse count data. We present an MCMC algorithm that approximates the posterior distribution over the latent variables conditioned on data that has been locally privatized by the geometric mechanism. Our method is based on two insights: 1) a novel reinterpretation of the geometric mechanism in terms of the Skellam distribution and 2) a general theorem that relates the Skellam and Bessel distributions. We demonstrate our method's utility using two case studies that involve real-world email data. We show that our method consistently outperforms the commonly used naive approach, wherein inference proceeds as usual, treating the locally privatized data as if it were not privatized.

Live content is unavailable. Log in and register to view live content