Skip to yearly menu bar Skip to main content


Poster

On the Complexity of Approximating Wasserstein Barycenters

Alexey Kroshnin · Nazarii Tupitsa · Darina Dvinskikh · Pavel Dvurechenskii · Alexander Gasnikov · Cesar Uribe

Pacific Ballroom #203

Keywords: [ Convex Optimization ] [ Large Scale Learning and Big Data ] [ Optimization - Others ] [ Parallel and Distributed Learning ]


Abstract: We study the complexity of approximating the Wasserstein barycenter of m discrete measures, or histograms of size n, by contrasting two alternative approaches that use entropic regularization. The first approach is based on the Iterative Bregman Projections (IBP) algorithm for which our novel analysis gives a complexity bound proportional to mn2/ε2 to approximate the original non-regularized barycenter. On the other hand, using an approach based on accelerated gradient descent, we obtain a complexity proportional to~mn2/ε. As a byproduct, we show that the regularization parameter in both approaches has to be proportional to ε, which causes instability of both algorithms when the desired accuracy is high. To overcome this issue, we propose a novel proximal-IBP algorithm, which can be seen as a proximal gradient method, which uses IBP on each iteration to make a proximal step. We also consider the question of scalability of these algorithms using approaches from distributed optimization and show that the first algorithm can be implemented in a centralized distributed setting (master/slave), while the second one is amenable to a more general decentralized distributed setting with an arbitrary network topology.

Live content is unavailable. Log in and register to view live content