Skip to yearly menu bar Skip to main content


Poster

FloWaveNet : A Generative Flow for Raw Audio

Sungwon Kim · Sang-gil Lee · Jongyoon Song · Jaehyeon Kim · Sungroh Yoon

Pacific Ballroom #2

Keywords: [ Deep Generative Models ] [ Speech Processing ]


Abstract:

Most modern text-to-speech architectures use a WaveNet vocoder for synthesizing high-fidelity waveform audio, but there have been limitations, such as high inference time, in practical applications due to its ancestral sampling scheme. The recently suggested Parallel WaveNet and ClariNet has achieved real-time audio synthesis capability by incorporating inverse autoregressive flow (IAF) for parallel sampling. However, these approaches require a two-stage training pipeline with a well-trained teacher network and can only produce natural sound by using probability distillation along with heavily-engineered auxiliary loss terms. We propose FloWaveNet, a flow-based generative model for raw audio synthesis. FloWaveNet requires only a single-stage training procedure and a single maximum likelihood loss, without any additional auxiliary terms, and it is inherently parallel due to the characteristics of generative flow. The model can efficiently sample raw audio in real-time, with clarity comparable to previous two-stage parallel models. The code and samples for all models, including our FloWaveNet, are available on GitHub.

Live content is unavailable. Log in and register to view live content