Skip to yearly menu bar Skip to main content


Stochastic Optimization for DC Functions and Non-smooth Non-convex Regularizers with Non-asymptotic Convergence

Yi Xu · Qi Qi · Qihang Lin · rong jin · Tianbao Yang

Pacific Ballroom #109

Keywords: [ Non-convex Optimization ]


Difference of convex (DC) functions cover a broad family of non-convex and possibly non-smooth and non-differentiable functions, and have wide applications in machine learning and statistics. Although deterministic algorithms for DC functions have been extensively studied, stochastic optimization that is more suitable for learning with big data remains under-explored. In this paper, we propose new stochastic optimization algorithms and study their first-order convergence theories for solving a broad family of DC functions. We improve the existing algorithms and theories of stochastic optimization for DC functions from both practical and theoretical perspectives. Moreover, we extend the proposed stochastic algorithms for DC functions to solve problems with a general non-convex non-differentiable regularizer, which does not necessarily have a DC decomposition but enjoys an efficient proximal mapping. To the best of our knowledge, this is the first work that gives the first non-asymptotic convergence for solving non-convex optimization whose objective has a general non-convex non-differentiable regularizer.

Live content is unavailable. Log in and register to view live content