Skip to yearly menu bar Skip to main content


On the Universality of Invariant Networks

Haggai Maron · Ethan Fetaya · Nimrod Segol · Yaron Lipman

Pacific Ballroom #74

Keywords: [ Deep Learning Theory ]

Abstract: Constraining linear layers in neural networks to respect symmetry transformations from a group $G$ is a common design principle for invariant networks that has found many applications in machine learning. In this paper, we consider a fundamental question that has received very little attention to date: Can these networks approximate any (continuous) invariant function? We tackle the rather general case where $G\leq S_n$ (an arbitrary subgroup of the symmetric group) that acts on $\R^n$ by permuting coordinates. This setting includes several recent popular invariant networks. We present two main results: First, $G$-invariant networks are universal if high-order tensors are allowed. Second, there are groups $G$ for which higher-order tensors are unavoidable for obtaining universality. $G$-invariant networks consisting of only first-order tensors are of special interest due to their practical value. We conclude the paper by proving a necessary condition for the universality of $G$-invariant networks that incorporate only first-order tensors. Lastly, we propose a conjecture stating that this condition is also sufficient.

Live content is unavailable. Log in and register to view live content