Skip to yearly menu bar Skip to main content


Rademacher Complexity for Adversarially Robust Generalization

Dong Yin · Kannan Ramchandran · Peter Bartlett

Pacific Ballroom #207

Keywords: [ Statistical Learning Theory ] [ Deep Learning Theory ] [ Adversarial Examples ]

Abstract: Many machine learning models are vulnerable to adversarial attacks; for example, adding adversarial perturbations that are imperceptible to humans can often make machine learning models produce wrong predictions with high confidence; moreover, although we may obtain robust models on the training dataset via adversarial training, in some problems the learned models cannot generalize well to the test data. In this paper, we focus on $\ell_\infty$ attacks, and study the adversarially robust generalization problem through the lens of Rademacher complexity. For binary linear classifiers, we prove tight bounds for the adversarial Rademacher complexity, and show that the adversarial Rademacher complexity is never smaller than its natural counterpart, and it has an unavoidable dimension dependence, unless the weight vector has bounded $\ell_1$ norm, and our results also extend to multi-class linear classifiers; in addition, for (nonlinear) neural networks, we show that the dimension dependence in the adversarial Rademacher complexity also exists. We further consider a surrogate adversarial loss for one-hidden layer ReLU network and prove margin bounds for this setting. Our results indicate that having $\ell_1$ norm constraints on the weight matrices might be a potential way to improve generalization in the adversarial setting. We demonstrate experimental results that validate our theoretical findings.

Live content is unavailable. Log in and register to view live content