Skip to yearly menu bar Skip to main content


Batch Policy Learning under Constraints

Hoang Le · Cameron Voloshin · Yisong Yue

Pacific Ballroom #31

Keywords: [ Theory and Algorithms ] [ Safety ] [ Planning and Control ]


When learning policies for real-world domains, two important questions arise: (i) how to efficiently use pre-collected off-policy, non-optimal behavior data; and (ii) how to mediate among different competing objectives and constraints. We thus study the problem of batch policy learning under multiple constraints, and offer a systematic solution. We first propose a flexible meta-algorithm that admits any batch reinforcement learning and online learning procedure as subroutines. We then present a specific algorithmic instantiation and provide performance guarantees for the main objective and all constraints. As part of off-policy learning, we propose a simple method for off-policy policy evaluation (OPE) and derive PAC-style bounds. Our algorithm achieves strong empirical results in different domains, including in a challenging problem of simulated car driving subject to multiple constraints such as lane keeping and smooth driving. We also show experimentally that our OPE method outperforms other popular OPE techniques on a standalone basis, especially in a high-dimensional setting.

Live content is unavailable. Log in and register to view live content