Download the full program to your own calendar: HTML ICAL XML
Tue 08.30 (Oren) |
ICML Opening |
Tue 10.30 (Alon) |
Topic Models and Matrix Factorization |
|
Tue 10.30 (Tamar) |
Reinforcement Learning 1 |
|
Tue 10.30 (Rimon) |
Ensemble Methods |
|
Tue 10.30 (Hadas) |
Statistical Relational Learning |
|
Tue 10.30 (Arava) |
Large-Scale Learning and Optimization |
|
Tue 13.30 (Alon) |
Matrix Factorization and Recommendation |
|
Tue 13.30 (Tamar) |
Reinforcement Learning 2 |
|
Tue 13.30 (Rimon) |
Deep Learning 1 |
|
Tue 13.30 (Hadas) |
Multi-Task and Transfer Learning |
|
Tue 13.30 (Oren) |
Ranking and Preference Learning |
|
Tue 15.40 (Alon) |
Latent-Variable Models |
- 397: The IBP Compound Dirichlet Process and its Application to Focused Topic Modeling
S. Williamson, C. Wang, K. Heller, D. Blei
- 549: Forgetting Counts: Constant Memory Inference for a Dependent Hierarchical Pitman-Yor Process
N. Bartlett, D. Pfau, F. Wood
- 371: A Stick-Breaking Construction of the Beta Process
J. Paisley, A. Zaas, C. Woods, G. Ginsburg, L. Carin
- 551: Distance Dependent Chinese Restaurant Processes
D. Blei, P. Frazier
|
Tue 15.40 (Tamar) |
Reinforcement Learning 3 |
- 475: Generalizing Apprenticeship Learning across Hypothesis Classes
T. Walsh, K. Subramanian, M. Littman, C. Diuk
- 627: Toward Off-Policy Learning Control with Function Approximation
H. Maei, C. Szepesvari, S. Bhatnagar, R. Sutton
- 464: Efficient Reinforcement Learning with Multiple Reward Functions for Randomized Controlled Trial Analysis
D. Lizotte, M. Bowling, S. Murphy
- 442: Internal Rewards Mitigate Agent Boundedness
J. Sorg, S. Singh, R. Lewis
|
Tue 15.40 (Rimon) |
Deep Learning 2 |
|
Tue 15.40 (Hadas) |
Structured Output Learning |
|
Tue 15.40 (Oren) |
Dimensionality Reduction 1 |
|
Tue 17.30 (Oren) |
Best 10-Year Paper: Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
Erin L. Allwein, Robert E. Schapire, Yoram Singer
|
Tue 18.00
(Oren Foyer) |
Poster Session 1 |
Wed 10.30 (Alon) |
Graph Clustering |
|
Wed 10.30 (Tamar) |
Reinforcement Learning 4 |
- 303: Analysis of a Classification-based Policy Iteration Algorithm
A. Lazaric, M. Ghavamzadeh, R. Munos
- 652: Nonparametric Return Distribution Approximation for Reinforcement Learning
T. Morimura, M. Sugiyama, H. Kashima, H. Hachiya, T. Tanaka
- 571: Inverse Optimal Control with Linearly Solvable MDPs
K. Dvijotham, E. Todorov
- 52: Feature Selection Using Regularization in Approximate Linear Programs for Markov Decision Processes
M. Petrik, G. Taylor, R. Parr, S. Zilberstein
|
Wed 10.30 (Rimon) |
Risk estimation and Cost-sensitive Learning |
|
Wed 10.30 (Hadas) |
Kernels |
|
Wed 10.30 (Oren) |
Dimensionality Reduction 2 |
|
Wed 15.40 (Alon) |
Invited Applications 1 |
|
Wed 15.40 (Tamar) |
Clustering 1 |
|
Wed 15.40 (Rimon) |
Causal Inference |
|
Wed 15.40 (Hadas) |
Large Margin Methods |
|
Wed 15.40 (Oren) |
Compact Representations |
|
Thu 10.30 (Alon) |
Graphical Models |
|
Thu 10.30 (Tamar) |
Clustering 2 |
|
Thu 10.30 (Rimon) |
Feature and Kernel Selection |
- 540: Simple and Efficient Multiple Kernel Learning By Group Lasso
Z. Xu, R. Jin, H. Yang, I. King, M. Lyu
- 238: Online Streaming Feature Selection
X. Wu, K. Yu, H. Wang, W. Ding
- 247: Feature Selection as a One-Player Game
R. Gaudel, M. Sebag
- 227: Learning Sparse SVM for Feature Selection on Very High Dimensional Datasets
M. Tan, L. Wang, I. Tsang
|
Thu 10.30 (Hadas) |
Learning Theory |
|
Thu 10.30 (Oren) |
Exploration and Feature Construction |
|
Thu 13.30 (Alon) |
Invited Applications 2 |
|
Thu 13.30 (Tamar) |
Semi-Supervised Learning 1 |
|
Thu 13.30 (Rimon) |
Gaussian Processes |
|
Thu 13.30 (Hadas) |
Online Learning |
|
Thu 13.30 (Oren) |
Multi-Agent Learning |
|
Thu 15.40 (Alon) |
Graphical Models and Bayesian Methods |
|
Thu 15.40 (Tamar) |
Semi-Supervised Learning 2 |
|
Thu 15.40 (Rimon) |
Time-Series Analysis |
|
Thu 15.40 (Hadas) |
Online and Active Learning |
|
Thu 15.40 (Oren) |
Multi-Label and Multi-Instance Learning |
|
Thu 17.30 (Oren) |
Business Meeting |
Thu 18.30
(Oren Foyer) |
Poster Session 2 |
Fri 08.30 (King Shlomo, Dan Carmel) |
Budgeted Learning
Dragos Margineantu, Russell Greiner, Tomas Singliar and Prem Melville
|
Fri 09.00 (Alon, Dan Panorama) |
Reinforcement Learning and Search in Very Large Spaces
Peter Auer, Samuel Kaski and Csaba Szepesvari |
Fri 09.00 (Rimon, Dan Carmel) |
Social Analytics: Learning from Human Interactions
Elad Yom-Tov, Shie Mannor and Yossi Richter
|
Fri 09.00 (Erez, Dan Panorama) |
Machine Learning and Open Source Software
Soeren Sonnenburg, Mikio Braun, Cheng Soon Ong and Patrik Hoyer |
Fri 09.00 (Dekel, Dan Carmel) |
Learning to Rank Challenge
Tie-Yan Liu, Olivier Chapelle and Yi Chang |
Fri 09.00 (Oren, Dan Panorama) |
Topic Models; Structure, Applications, Evaluation, and Extensions
Michal Rosen-Zvi, Amit Gruber and Richard Zemel |
Fri 09.00 (King David, Dan Carmel) |
Learning from Multi-Label Data
Min-Ling Zhang, Grigorios Tsoumakas and Zhi-Hua Zhou |
Fri 09.00 (Brosh, Dan Panorama) |
Machine Learning and Games
Kurt Driessens, Olana Missura and Christian Thurau |
Fri 09.00 (Tomer, Dan Panorama) |
Learning in Non-(geo)metric Spaces
Joachim Buhmann, Robert Duin, Mario Figueiredo, Edwin Hancock, Vittorio Murino and Marcello Pelillo |
|