Philip Thomas
We show that several popular discounted reward natural actor-critics, including the popular NAC-LSTD and eNAC algorithms, do not generate unbiased estimates of the natural policy gradient as claimed. We derive the first unbiased discounted reward natural actor-critics using batch and iterative approaches to gradient estimation. We argue that the bias makes the existing algorithms more appropriate for the average reward setting. We also show that, when Sarsa(lambda) is guaranteed to converge to an optimal policy, the objective function used by natural actor-critics is concave, so policy gradient methods are guaranteed to converge to globally optimal policies as well.
Cho-Jui Hsieh and Si Si and Inderjit Dhillon
The kernel support vector machine (SVM) is one of the most widely used classification methods; however, the amount of computation required becomes the bottleneck when facing millions of samples. In this paper, we propose and analyze a novel divide-and-conquer solver for kernel SVMs (DC-SVM). In the division step, we partition the kernel SVM problem into smaller subproblems by clustering the data, so that each subproblem can be solved independently and efficiently. We show theoretically that the support vectors identified by the subproblem solution are likely to be support vectors of the entire kernel SVM problem, provided that the problem is partitioned appropriately by kernel clustering. In the conquer step, the local solutions from the subproblems are used to initialize a global coordinate descent solver, which converges quickly as suggested by our analysis. By extending this idea, we develop a multilevel Divide-and-Conquer SVM algorithm with adaptive clustering and early prediction strategy, which outperforms state-of-the-art methods in terms of training speed, testing accuracy, and memory usage. As an example, on the covtype dataset with half-a-million samples, DC-SVM is 7 times faster than LIBSVM in obtaining the exact SVM solution (to within 10^{-6
Jascha Sohl-Dickstein and Ben Poole and Surya Ganguli
We present an algorithm for minimizing a sum of functions that combines the computational efficiency of stochastic gradient descent (SGD) with the second order curvature information leveraged by quasi-Newton methods. We unify these disparate approaches by maintaining an independent Hessian approximation for each contributing function in the sum. We maintain computational tractability and limit memory requirements even for high dimensional optimization problems by storing and manipulating these quadratic approximations in a shared, time evolving, low dimensional subspace. This algorithm contrasts with earlier stochastic second order techniques that treat the Hessian of each contributing function as a noisy approximation to the full Hessian, rather than as a target for direct estimation. Each update step requires only a single contributing function or minibatch evaluation (as in SGD), and each step is scaled using an approximate inverse Hessian and little to no adjustment of hyperparameters is required (as is typical for quasi-Newton methods). We experimentally demonstrate improved convergence on seven diverse optimization problems. The algorithm is released as open source Python and MATLAB packages.
Wei Ping and Qiang Liu and Alex Ihler
In this work, we propose the marginal structured SVM (MSSVM) for structured prediction with hidden variables. MSSVM properly accounts for the uncertainty of hidden variables, and can significantly outperform the previously proposed latent structured SVM (LSSVM; Yu & Joachims (2009)) and other state-of-art methods, especially when that uncertainty is large. Our method also results in a smoother objective function, making gradient-based optimization of MSSVMs converge significantly faster than for LSSVMs. We also show that our method consistently outperforms hidden conditional random fields (HCRFs; Quattoni et al. (2007)) on both simulated and real-world datasets. Furthermore, we propose a unified framework that includes both our and several other existing methods as special cases, and provides insights into the comparison of different models in practice.
Tasuku Soma and Naonori Kakimura and Kazuhiro Inaba and Ken-ichi Kawarabayashi
We consider the budget allocation problem over bipartite influence model proposed by Alon et al. This problem can be viewed as the well-known influence maximization problem with budget constraints. We first show that this problem and its much more general form fall into a general setting; namely the monotone submodular function maximization over integer lattice subject to a knapsack constraint. Our framework includes Alon et al.'s model, even with a competitor and with cost. We then give a (1-1/e)-approximation algorithm for this more general problem. Furthermore, when influence probabilities are nonincreasing, we obtain a faster (1-1/e)-approximation algorithm, which runs essentially in linear time in the number of nodes. This allows us to implement our algorithm up to almost 10M edges (indeed, our experiments tell us that we can implement our algorithm up to 1 billion edges. It would approximately take us only 500 seconds.).
Gavin Taylor and Connor Geer and David Piekut
Recent interest in the use of $L_1$ regularization in the use of value function approximation includes Petrik et al.'s introduction of $L_1$-Regularized Approximate Linear Programming (RALP). RALP is unique among $L_1$-regularized approaches in that it approximates the optimal value function using off-policy samples. Additionally, it produces policies which outperform those of previous methods, such as LSPI. RALP's value function approximation quality is affected heavily by the choice of state-relevance weights in the objective function of the linear program, and by the distribution from which samples are drawn; however, there has been no discussion of these considerations in the previous literature. In this paper, we discuss and explain the effects of choices in the state-relevance weights and sampling distribution on approximation quality, using both theoretical and experimental illustrations. The results provide insight not only onto these effects, but also provide intuition into the types of MDPs which are especially well suited for approximation with RALP.
Shai Shalev-Shwartz and Tong Zhang
We introduce a proximal version of the stochastic dual coordinate ascent method and show how to accelerate the method using an inner-outer iteration procedure. We analyze the runtime of the framework and obtain rates that improve state-of-the-art results for various key machine learning optimization problems including SVM, logistic regression, ridge regression, Lasso, and multiclass SVM. Experiments validate our theoretical findings.
David Gleich and Michael Mahoney
We formalize and illustrate the general concept of algorithmic anti-differentiation: given an algorithmic procedure, e.g., an approximation algorithm for which worst-case approximation guarantees are available or a heuristic that has been engineered to be practically-useful but for which a precise theoretical understanding is lacking, an algorithmic anti-derivative is a precise statement of an optimization problem that is exactly solved by that procedure. We explore this concept with a case study of approximation algorithms for finding locally-biased partitions in data graphs, demonstrating connections between min-cut objectives, a personalized version of the popular PageRank vector, and the highly effective "push" procedure for computing an approximation to personalized PageRank. We show, for example, that this latter algorithm solves (exactly, but implicitly) an l1-regularized l2-regression problem, a fact that helps to explain its excellent performance in practice. We expect that, when available, these implicit optimization problems will be critical for rationalizing and predicting the performance of many approximation algorithms on realistic data.