lifelong learning

  • Anastasia Pentina and Christoph Lampert

    A PAC-Bayesian bound for Lifelong Learning (pdf)

    Transfer learning has received a lot of attention in the machine learning community over the last years, and several effective algorithms have been developed. However, relatively little is known about their theoretical properties, especially in the setting of lifelong learning, where the goal is to transfer information to tasks for which no data have been observed so far. In this work we study lifelong learning from a theoretical perspective. Our main result is a PAC-Bayesian generalization bound that offers a unified view on existing paradigms for transfer learning, such as the transfer of parameters or the transfer of low-dimensional representations. We also use the bound to derive two principled lifelong learning algorithms, and we show that these yield results comparable with existing methods.

  • Zhiyuan Chen and Bing Liu

    Topic Modeling using Topics from Many Domains, Lifelong Learning and Big Data (pdf)

    Topic modeling has been commonly used to discover topics from document collections. However, unsupervised models can generate many incoherent topics. To address this problem, several knowledge-based topic models have been proposed to incorporate prior domain knowledge from the user. This work advances this research much further and shows that without any user input, we can mine the prior knowledge automatically and dynamically from topics already found from a large number of domains. This paper first proposes a novel method to mine such prior knowledge dynamically in the modeling process, and then a new topic model to use the knowledge to guide the model inference. What is also interesting is that this approach offers a novel lifelong learning algorithm for topic discovery, which exploits the big (past) data and knowledge gained from such data for subsequent modeling. Our experimental results using product reviews from 50 domains demonstrate the effectiveness of the proposed approach.

2013-2014 ICML | International Conference on Machine Learning