SHIWEI LAN and Bo Zhou and Babak Shahbaba
Statistical models with constrained probability distributions are abundant in machine learning. Some examples include regression models with norm constraints (e.g., Lasso), probit models, many copula models, and Latent Dirichlet Allocation (LDA) models. Bayesian inference involving probability distributions confined to constrained domains could be quite challenging for commonly used sampling algorithms. For such problems, we propose a novel Markov Chain Monte Carlo (MCMC) method that provides a general and computationally efficient framework for handling boundary conditions. Our method first maps the $D$-dimensional constrained domain of parameters to the unit ball ${\bf B
Philip Thomas
Natural gradient ascent (NGA) is a popular optimization method that uses a positive definite metric tensor. In many applications the metric tensor is only guaranteed to be positive semidefinite (e.g., when using the Fisher information matrix as the metric tensor), in which case NGA is not applicable. In our first contribution, we derive generalized natural gradient ascent (GeNGA), a generalization of NGA which allows for positive semidefinite non-smooth metric tensors. In our second contribution we show that, in standard settings, GeNGA and NGA can both be divergent. We then establish sufficient conditions to ensure that both achieve various forms of convergence. In our third contribution we show how several reinforcement learning methods that use NGA without positive definite metric tensors can be adapted to properly use GeNGA.
Haitham Bou Ammar and Eric Eaton and Paul Ruvolo and Matthew Taylor
Policy gradient algorithms have shown considerable recent success in solving high-dimensional sequential decision making tasks, particularly in robotics. However, these methods often require extensive experience in a domain to achieve high performance. To make agents more sample-efficient, we developed a multi-task policy gradient method to learn decision making tasks consecutively, transferring knowledge between tasks to accelerate learning. Our approach provides robust theoretical guarantees, and we show empirically that it dramatically accelerates learning on a variety of dynamical systems, including an application to quadrotor control.
Xuezhi Wang and Tzu-Kuo Huang and Jeff Schneider
Transfer learning algorithms are used when one has sufficient training data for one supervised learning task (the source task) but only very limited training data for a second task (the target task) that is similar but not identical to the first. These algorithms use varying assumptions about the similarity between the tasks to carry information from the source to the target task. Common assumptions are that only certain specific marginal or conditional distributions have changed while all else remains the same. Alternatively, if one has only the target task, but also has the ability to choose a limited amount of additional training data to collect, then active learning algorithms are used to make choices which will most improve performance on the target task. These algorithms may be combined into active transfer learning, but previous efforts have had to apply the two methods in sequence or use restrictive transfer assumptions. We propose two transfer learning algorithms that allow changes in all marginal and conditional distributions but assume the changes are smooth in order to achieve transfer between the tasks. We then propose an active learning algorithm for the second method that yields a combined active transfer learning algorithm. We demonstrate the algorithms on synthetic functions and a real-world task on estimating the yield of vineyards from images of the grapes.
Zhiyuan Chen and Bing Liu
Topic modeling has been commonly used to discover topics from document collections. However, unsupervised models can generate many incoherent topics. To address this problem, several knowledge-based topic models have been proposed to incorporate prior domain knowledge from the user. This work advances this research much further and shows that without any user input, we can mine the prior knowledge automatically and dynamically from topics already found from a large number of domains. This paper first proposes a novel method to mine such prior knowledge dynamically in the modeling process, and then a new topic model to use the knowledge to guide the model inference. What is also interesting is that this approach offers a novel lifelong learning algorithm for topic discovery, which exploits the big (past) data and knowledge gained from such data for subsequent modeling. Our experimental results using product reviews from 50 domains demonstrate the effectiveness of the proposed approach.